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The Performance of Two Symbol Timing
Recovery Algorithms for PSK Demodulators
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Abstract— A statistical analysis of a decision-directed symbol
timing algorithm for phase shift keyed modems is presented. The
timing detector uses only one sample per symbol period and is
suitable for high speed modems which employ discrete-time syn-
chronization methods. Expressions for the timing detector’s mean
value and variance, as a function of timing offset, are derived
and compared to simulation results. The analysis includes the
effects of decision errors which occur at low signal-to-noise ratios
and eventually limit the useful operating range of the decision-
directed methods. A modification is described so that the need for
prior phase recovery is avoided. These algorithms are compared
to a popular two-sample-per-symbol nondecision-directed timing
detector. A method of examining the relative performance of the
various algorithms is presented and results are given for a range
of signal-to-noise ratios and channel bandwidths.

1. INTRODUCTION

AVARIETY of techniques are suitable for symbol timing
recovery in phase shift keyed modems which operate on
continuous signals (e.g., [5], [8], [2]). In the case of high-
speed modems, (tens of megasymbols per second) it is likely
that receive filtering will be implemented using analog filters
and that the received signal will be digitized after filtering. In
this paper two symbol timing algorithms which operate on the
resulting samples are considered.

Fig. 1 shows a model of the system under consideration.
Double lines indicate complex-valued quantities. The task of
estimating the carrier phase ¢ at the receiver is not considered
in this paper. Inphase and quadrature samples after receive
filtering are available for the symbol timing detector. The
same model applies when a numerically controlled oscillator
(NCO) is used in place of a VCO. The symbol timing loops
can therefore be “all digital” (e.g., [1]), or can use a hybrid
approach where the time offset is derived via discrete-time
processing and the sampling instant adjustment is implemented
with analog circuitry (e.g., [10]).

We will examine the statistical properties of two symbol tim-
ing algorithms that are suitable for continuous PSK modems
with the structure outlined above. The first algorithm consid-
ered is a one-sample-per-symbol decision-directed algorithm
[2] which will be called the DD-1 algorithm. It may be written
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as
2n = Re{z2,4)_1 — Tp_1d)} )

where z, is the nth symbol sample, and a, is the nth
transmitted symbol, with asterisk indicating complex conjugate
and hat indicating that the receiver has to estimate the value
of a,, (hence, the “decision directed” nature of the algorithm).
Normally, the estimate of a,, is made by choosing the symbol
closest to the current z,,. This approach allows a very efficient
implementation.

A baseband derivation of DD-1 is given in [2] for PAM
signals. However the DD-1 algorithm is suitable for any PSK
signal set. The derivation in [1] follows from an approximation
to the maximum likelihood estimate of the timing offset, 7, at
the receiver. The decision-directed approach is attractive due
to the single symbol-centered sample, particularly for high-
speed applications, but decision-directed algorithms have a
reputation for failing at low signal-to-noise ratios. We address
this in Section II, by investigating the performance of this
algorithm by analysis and simulation, taking the effect of
decision errors into account.

The algorithm described above is compared to a popular
nondecision-directed timing function [3] which uses two sam-
ples per symbol. This algorithm will be called NDD-2. It may
be written

Up = z:.171/2(3'52 -z )+ 33_1/2(5'3(1" -zr ) @

where the superscript indicates the inphase or quadrature
component of the symbol sample, and the subscript n — 1/2
indicates the samples lying midway between the symbol-
centered samples of the (n — 1)th and nth symbols. The model
in Fig. 1 is still valid for this algorithm except that two (T'/2)
delay elements would be used after the sampler. In Section
III some new results are derived for NDD-2 and comparisons
are made with DD-1.
Given an overall (real-valued) impulse response

g(t) = h(t) x h(=t) ©)

the complex-valued sample of the nth symbol after receive
filtering can be expressed, assuming no phase offset (ie.,
¢ = ¢ in Fig. 1), as

Tn =Yn(a, T) + vn “
where
Un(a, )= D @igai(7) ®
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Fig. 1. Model of modem symbol timing for the decision directed algorithm.
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Fig. 2. Raised cosine filter impulse response g(t).

with g,_;(7) denoting g((n — ¢)T + 7) and the noise term
vp, = v(nT + ) which is zero-mean complex-valued low-pass
noise.
We assume use of the raised cosine impulse response, for
which
) = sin (wt/T) cos (ant/T)
T wt/T(1 - (20¢/T)?)

where « is the roll-off parameter. In the following analysis
we have used the approximation that g(t) can be truncated
and so only a finite number of symbols will contribute to y,.
For example, from the plot of g(¢) in Fig. 2 it can be seen that
when |¢| is greater than three symbol periods the value of g(t)
is close to zero if « is greater than about 0.4. We will denote
the symbols in the vicinity of a,, by

©)

)]

In some demodulators it may be desirable to make the symbol
timing independent of carrier phase recovery. The NDD-
2 algorithm has the property of being invariant to phase
offsets but the DD-1 algorithm does not. The performance
of a modified version of the decision-directed algorithm,
called DD-1M, which can be used without prior carrier phase
recovery, is addressed in Section IV. Section V extends some
results to MPSK, particularly M = 4, modulation.

Finally, some brief comments are required on how the
performance of timing detectors effects the overall operation
of the demodulator. The simplest method of estimating timing

a= (an—m7 An—m+1,""" an+m)-

jitter assumes that the loop is locked, and that the mean value
of the timing detector (often called it’s S curve) is a linear
function of the sampling offset ~, with constant variance. If
the timing jitter is small enough, so that uniform sampling
can be assumed, the z-transform method can then be used to
calculate the sampling clock variance (as in [4] or [7]). The
results of the following sections describe the performance of
timing detectors in terms of S curve shape and slope at the
origin, and the correlation properties of the detector output.
This allows timing algorithms to be compared against each
other for given loop bandwidths and signal-to-noise ratios.

II. PERFORMANCE OF THE DECISION-DIRECTED
TIMING ALGORITHM FOR BPSK

For comparison with later results, first consider the case
of no errors in estimating 4,. In this situation it is easy to
determine the mean value of the DD-1 timing estimator. At
this stage we are assuming BPSK, with a,, = £1. Using (1)
and (4) and replacing a;, by an,

E{ZW(T)} = E{Re {-'L'nan—l}} - E{RC {xn_lan}}

= E{an_1 (Z:aiyn-i(f) + Vn) }

- E{an (Zaign—i—l(T) + Vn—l) } (®)

Assuming that the transmitted symbols are independent the
result simplifies to

E{zn(1)} = g1(7) — 9-1(7)- ®

In a similar fashion an expression for the variance of z,, may
be readily derived if it is assumed that no errors are made in
symbol decisions. Since the a,, are real-valued, the Re operator
can be dropped from the following, provided the real part of
v, is used.

var (zu(7)) = E{23} - (E{z})? (10)
= E{(znan-1 — w"_la")z}
—(g1(7) - 9—1(7'))2
=2E{z2} - 2E{z,2n_1000n_1}
—(g1(1) — g-1(7))*. 1n
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The first term in (11) is

ZZgE(T) + 202
k

where o2 is the variance of real component of v,,. The second
term is

- 2E{ (Zaign_i('r) + un)

: Zajgn—l—j(T)+Vn—1 OnOn—1
J

= —QZZE{aiajanan_l}gn—i(T)gn—l—j(T)-

The only nonzero terms here are when ¢ = n and j =
n—1, and when ¢ = n — 1 and j = n, giving —2¢%(7) —
291(7)g—1(7). Collecting terms, (11) simplifies to give

var (2,(7)) = 20% 4+ g2(7) + g%, (7) + 2 Z g (r). (12)
r

The first term is due to the thermal noise and the remaining
terms are the “self-noise” components of the detector output.
It is clear that, for Nyquist channel responses, the self-noise
tends towards zero when the loop is locked.

We now consider the problem of decision errors. In reality,
the a,, may not be equal to a,, due to the combined effects of
noise, and ISI caused by timing offset. This is particularly true
at low signal to noise ratios. We will assume that d,, is chosen
simply by selecting the symbol closest to z,. This scheme is
easy to implement with a look-up table (LUT) approach (e.g.,
(11, [10D).

Taking the effect of decision errors into account, and as-
suming that the channel impulse response extends over 2m + 1
symbol periods, it is shown in Appendix A that for BPSK the
mean value of the DD-1 timing detector is

3p(r) = Blen(r)}
= Ea{ert (202 ) rir(@ - s @)} 13

where

2 [* 2

erf(z) = — v

@)= /O e~ duy (14)
and o? is again the variance of the real component of the
noise samples. (Note that erf (x) has a number of possible
definitions; the erf used above is an odd function which
allows some useful simplifications later on.) The notation
Eq indicates that the expectation is only with respect to the
transmitted symbols. It can easily be shown that this result is
consistent with the no-decision-errors case given by (9).

Equation (13) is the S curve for the DD-1 timing detector.
It has been evaluated using (A14) for the case of & = 0.4 with
m = 3. (Obviously a larger value of m would be required if ¢
was smaller.) Fig. 3 shows the results as a function of o. The
curves have been labeled with the equivalent Ej /Ny (energy
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Fig. 3. DD-1 algorithm’s mean value as a function of timing offset for BPSK
with Ep/No = 0,3,6,9 dB, a = 0.4.

per bit over single-sided noise spectral density). The relation
between E,/Ng and o is, (e.g., [S])

_ laPg?(0)
Eb/NO— 20’2711,

(15)
where |a| is the symbol magnitude (which is one in this case),
g(0) = 1 from (6), and n, is the number of bits per symbol.
Fig. 3 shows a comparison between simulation results for
the DD-1 timing detector, the theoretical values with decision
errors and noise given by (13) and the ideal (no noise) values
given by (9). Clearly the result given by (13) accurately models
the timing detector’s mean value derived from simulations.
Most of the simulations referred to in this paper were carried
out with the “SAT” software package [6]. Comparing the 9 dB
case of (13) with the ideal case shows that decision errors only
start to affect the S curve when the timing offset is greater
than about £0.2 7.

The variance of the DD-1 timing detector with decision
errors taken into account is analysed in Appendix B. The first
term in (10) is shown to be

E{2(r)} = Ea{2y,%<a> ) [ynm)yn_l(a)

(5) ()

20 yn(a)
+ E erf ( \/20_ )yn(a)(en_l(a) + 6n+1(a))

2
+ 2%B,L(cl)ea%l(:;)] } + 202 (16)

where e,(a) = e~ ¥n(@)/207

Fig. 4 shows good agreement between simulations of DD-1
variance and (10), by evaluation of (13) and (16). A curve for
no decision errors, corresponding to (12), has been plotted for
the 9 dB case.

So far the timing detector has been considered without re-
gard to how much correlation exists between adjacent outputs.
Since the timing loop bandwidth is often a very small fraction
of the symbol rate, only the lowest frequency components of
the timing detector output contribute to the timing jitter. It
is common to take the power spectral density (PSD) of the
timing detector outputs at 0 Hz for calculations of the timing
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Fig. 4. DD-1 algorithm’s variance as a function of timing offset for BPSK
with E,/No = 0, 3,6,9 dB, o = 0.4.

jitter (e.g., [71). For this reason we will analyze the correlation
between timing detector outputs so that the detector’s spectral
density at dc can be used as a performance metric.

Let d,, be the random component of the DD-1 output for
the nth symbol, i.e.,

dn = 2n — E{2,}. a7

The autocorrelation function Rya(m) = E{dnd,_.} is easy
to obtain if decision errors are neglected. Neglecting terms
containing g(r7T) where |r| > 3, gives

E{dndn_1} = —g1(1)g-1(7)
E{dndn—2} = —2g2(7)g-2(7).

When there are few decision errors and timing offset is
close to zero, the autocorrelation function will be small for
nonzero lags. For lower signal-to-noise ratios the self-noise
contributions will be small compared to the thermal noise term.
The d, are therefore expected to be substantially uncorrelated
when the timing loop is locked.

The power spectral density of DD-1 noise terms is given by
the discrete-time Fourier transform [11]

(18)
19

Sp(0) = Y Raa(k)e 7% (20)

k=—o00

where 0 is the normalized frequency in radians per second
27 f/ fs. Using the approximation that R44(k) = 0 for k # 0,
means that Sp(6) will be constant and equal to R44(0) (or
var (2,,)).

Fig. 5 shows plots of the power spectrums obtained by
simulations of the DD-1 and NDD-2 timing detectors at Ey, /Ng
values of 0 and 9 dB, each for timing offsets of 0 and 5% of T.
In all cases the decision-directed algorithm has a flat spectrum
whose amplitude agrees with the levels expected from Fig. 4.
This indicates that the assumptions made above concerning
Rgq(m) are reasonable. In Fig. 5 the plots were made by
averaging spectral estimates of the timing detector outputs, z,
(or u,) using 128 point periodograms [11]. When the timing
offset is 5% an impulse can be seen in the measured spectrum
at dc, due to the mean value of the timing detector.
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Fig. 5. Comparison of the DD-1 and NDD-2 algorithms’ power spectral
density at 0 and 5% timing offset as a function of frequency with Ej /No = 0
and 9 dB, a = 0.4.

In later figures the spectral density of the timing detector
at dc normalized by the square of the slope of the S curve
at 7 = 0 (i.e., $(0)/$%(0) which we will denote S(0)), has
been plotted. The normalization is required since the final
sampling instant variance will be proportional to this quantity,
provided that the loop bandwidth is small and constant [7].
(The normalization gives the spectral density for an equivalent
timing detector whose slope is unity.) This should be a “worst
case” normalization in that it assumes the loop bandwidth is
fixed. In practice the loop bandwidth is proportional to the .S
curve slope and so would be reduced at low-signal levels. This
would need to be considered in the overall system design.

Before leaving this section we will consider some simpli-
fications in the analysis which can be made in the region of
7 = 0. This is obviously the location of most interest when
symbol timing is “in lock.” The numerical evaluation of (13)
and (16) is tedious and can be bypassed when only the slope
and variance of the S curve at 7 = 0 are needed.

Dealing first with the slope of the DD-1 detector’s S curve
at the origin, from (13) '

diTE{zn(T)} = E“{erf (&l\‘(/?%—ﬂ)

i) - in-147)}
+ Eaf et (20 ) (a7
) @n

where gi(1) = £ g(kT + 7).
When 7 = 0, the first term in (21) becomes

Fa{ert (52 )an(02(0) - 4100 }

since the expected value of all terms with ¢ # n is zero.
As erf( ) is an odd function, and a, = %1, the first term
therefore simplifies to

erf (ﬁ) (61(0) = §-1(0)).
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For the second term in (21), it can be readily shown that

d yn(a, T) _ 2 _yz (a, ‘r)/20'2
dr erf( V2 ) \/ﬂe
1 .
. WZaign_i(T). (22)

When 7 = 0, the expected value of the second part of (21)
becomes

% ée—l/zazE,,{Zaign_i(O)(an+l - an_l)}.

Collecting terms, the final result is

e —-1/20?
$p(0) = %E{zn(r)}lrzo = (erf (—\712—0) _ % )

“(91(0) — 9-1(0)).
(23)

Comparing this to the derivative of (9), the right-hand term
represents the slope of the DD-1 detector S curve at the origin
when no decision errors are present, and the first term indicates
the relative reduction in slope due to decision errors.

The variance at the origin can be determined easily from
(16). Since E{z,(0)} = 0, and y,(a, 0) = a,, we have

var (z,(0)) = E.,{z -2 [anan,l erf (a/+/20)

. erf(an_l/\/20)+2\/_2: erf(an/\/%)ane—u%?

%
202 2
+ %e'l/" ]} + 202 24)
which simplifies to
Sp(0) = var (2,(0)) = 2(1 - ¢°)
2 402
- 4%0‘(16_1/202 AL +20° (25)

where ¢ = erf(1/\/20).

Equations (23) and (25) may be easily evaluated and
checked against the previous results at = = 0. We have
done this for (25) at four signal-to-noise ratios and shown the
results on Fig. 4 as square symbols. Evaluation of (23) gives
good agreement with the slopes in Fig. 3.

III. ANALYSIS AND COMPARISON OF THE
NONDECISION-DIRECTED ALGORITHM FOR BPSK

We now compare the DD-1 results with the nondecision-
directed timing detector NDD-2, defined in (2). When used
with BPSK with prior carrier phase recovery, only the I
channel components would be used in order to reduce detector
variance. Apart from the sampling rate being double that
of DD-I1, if the NDD-2 algorithm is precomputed via a
LUT approach, three samples are required which makes the
implementation slightly more difficult.
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The S curve of NDD-2 for BPSK can readily be derived,
using (2) and (5),

sn (1) = E{un(1)} = Y gm-1/2(7)(gm(T) = gm-1(7))
" 26)
and also

$N(0)=20_1/2+ 3 gm-1/2(Gm — gm-1) @D

where g, = g1, (0) = g(mT). It can be seen that the S curve
depends only on the channel impulse response and (unlike
DD-1) is not affected by the signal-to-noise ratio. (A detailed
derivation of the S curve in the frequency domain [3] gives
insight into the effect of different channel bandwidths.)

When the variance of NDD-2 is examined via simulation,
plots similar in shape to those of Fig. 4 are obtained showing
the typical self noise plus thermal noise contributions. In order
to compare the two detectors on the basis of normalised
spectral density at dc, the correlation properties of NDD-
2 must be examined. In this case adjacent samples of the
timing detector are significantly correlated and consequently
its spectral density is not flat.

To follow the same approach as before, let c,, represent the
random component of the nth NDD-2 output, i.e.,

Cn = un — E{un}. 28)

The correlation analysis for NDD-2 appears to be difficult in
the general case. However, when the timing offset is zero,
results for E{c,c,—m} may be derived which illustrate the
correlation and power spectrum of the detector. We have
simulated the effect of small timing offsets on the NDD-2
spectrum and found little difference between 7 = 0 and 5% of
T (see Fig. 5). Appendix C contains an outline of the analysis
of NDD-2’s correlation properties when 7 = 0. As we are
most interested in the detector’s noise spectrum at dc, let

Sn(0) =) Rec(k)
k

and from the results in (C10), (C11), and (C12), using the
approximation that R..(m) will remain the same when 7 = 0,
gives

oo

Sn(0) 2 2(0” + 0*) <1 - Z (Gm-1/2 — gm+1/2)2>- 29

m=1

This result is surprisingly simple considering the correlation
analysis for NDD-2. Although the R..(m) are nonzero, even
for the no-noise case, all the noise independent terms cancel
out when the autocorrelations are summed to form S..(0),
i.e., there is no self-noise at f = 0. The o* term is due to
noise times noise terms and so represents the squaring loss
associated with the nondecision-directed scheme. The term in
large brackets depends on the roll-off factor and evaluates to
0.3802 when a = 0.4.

It is important to describe how these timing functions are
affected by different channel bandwidths. The results given
in Figs. 3, 4, and 5 assume an a of 0.4 which was chosen
due to its widespread use. However, the timing detectors are
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Fig. 6. Comparison of the DD-1 and NDD-2 algorithms’ S curve slope as
a function of « for BPSK at E/No = 0 and 9 dB.
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Fig. 7. Comparison of the DD-1 and NDD-2 algorithms’ normalized power
spectral density at dc and the Cramer—Rao bound as a function of « for
BPSK at E,/Np = 0 and 9 dB.

quite sensitive to the roll-off factor and behave differently as
it varies. As pointed out in [3] the NDD-2 algorithm operates
better as « increases. The timing detector slope and normalized
PSD at dc for zero timing offset have been plotted for the
DD-1 and NDD-2 detectors in Figs. 6 and 7 as a function
of . These figures assume BPSK with no phase offset, a
normalized symbol rate (7" = 1) and fixed Ej/Nps of 0 and 9
dB, respectively. The DD-1 results are via evaluation of (23)
and (25) while the NDD-2 results are from (27) and (29). We
have checked these predictions with simulations at o = 0.1,
0.4, and 0.8 and found good agreement.

We have also plotted a lower bound on the figures which
represents the Cramer—Rao Bound on variance of timing esti-
mates [7], [12] for independent known symbols at the receiver.
As the number of symbols becomes large, the variance per
symbol is

2 2 2 o 2 2 -
UCRB=(W" [ iy df> -

The integral term depends on the shape of the channel impulse
response and may be shown to be equal to —g(0). The bound
is only mildly affected by the roll-off factor, as seen from the
figures.
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IV. PERFORMANCE OF TIMING ALGORITHMS
FOR BPSK WITHOUT PRIOR PHASE RECOVERY

Modems that use differentially coherent demodulation, or
require independent carrier and timing synchronization, must
use a timing offset detector which is insensitive to phase
offsets. The NDD-2 algorithm has this desirable attribute [3],
provided that both the real and imaginary components of data
samples in (2) are employed.

The DD-1 timing detector will not operate usefully with
an arbituary phase offset. However the phase offset can be
estimated from the two samples z,, and z,_1, and the samples
rotated before (1) is evaluated. In effect this is a simple
form of prior phase recovery. Since only z, and x,_; are
used in the estimation of phase offset, the whole sequence of
phase estimation, sample rotation and timing offset estimation
may be precomputed and stored in a fast LUT. Although the
performance is degraded due to the high phase error variance,
the approach allows phase independent, one-sample-per-T'
symbol timing to be implemented very easily. For example, it
has been used in a flexible PSK demodulator which operates
to 85 Msymbol/s [10].

We will denote the algorithm described above as DD-1M.
We used a nondecision-directed phase estimator [9] for the
phase estimation operation in DD-1M. Simulations shows that
its S curve resembles the plots in Fig. 3 but the amplitude is
reduced by about one third. DD-1M’s performance, together
with the other timing algorithms, is summarized in Figs. 8-10
at the end of the paper.

V. TIMING ALGORITHM PERFORMANCE FOR MPSK, M > 2

In this section we will extend the previous results, where
possible, to higher order PSK signal sets. This includes expres-
sions for the mean and variance of the DD-1 timing detector
in a number of cases, and comparison of DD-1, DD-1M, and
NDD-2 results by simulation.

First consider DD-1 with no phase offset or decision errors
in symbol estimates, and MPSK modulation where M > 2.
The nth transmit symbol can be represented as

an = 6]2#Ln /M

with L, € {0, 1,---,M —1}. (31
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Fig. 9. Comparison of the algorithms’ normalized PSD(0) and the CRB as
a function of Ej,/No for BPSK and QPSK with no phase offset, o = 0.4.
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Fig. 10. Comparison of the algorithms’ normalized PSD(0) as a function of
Ey /Ny for BPSK and QPSK, o = 0.4, f, = 0.0011 cycles per symbol.

Replacing a,_; and a, in (8) by a_, and a}, and since, for
example,

E{Re{a}_qa;}} =1 ifi=n-1

=0 otherwise,

after simplification, the same S curve expression is obtained,
ie., (9).

Under similar assumptions an expression for the variance
of z, may be derived. This time, using Re {c} = (c + ¢*)/2,
we can write

E{22} = E{1/A(zna}_1 + Than-1 — Tn_10% — T _ja,)%}.

(32)
The expression may be expanded in a similar fashion to
Section II. The result is

var (zn(7)) = 20+ (g3(7) +621(7))/2+ Y g}(7). (33)

ket
—1,0,1

It can be seen that the self-noise components are half those of
the BPSK case in (12). The thermal noise contributions, for
fixed E /Ny and constant magnitude symbols, are also smaller
as the number of bits per symbol increases, as shown by (15).

We will now examine the performance of the DD-1 algo-
rithm specifically for QPSK (M = 4) at low signal-to-noise
ratios when there is no phase offset. Here we can take
advantage of the fact that QPSK is equivalent to orthogonal
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BPSK signal sets. Denoting real and imaginary components
of z, by z, = 1'711 + j:cg, and likewise for a,, and v,, then
(1) becomes

2z, = Re {(z] + jz@)(al_, — jad_,)
= (@h_y +522_))(al - jaQ)}
wlal_y — 2l _jal)+ (2Qad_; — 22 1aQ). (34)

n

~~

Furthermore, from (5),

z! =z:afg((n—i)T+7’)+I/,Il

K3

and similarly for z¢. The two terms in (34) are therefore
independent and each is equivalent to the case considered in
Section II. After taking signal and noise scaling factors into
account, it is found that the S curves in the QPSK case are the
same, and the variance is reduced by a factor of 2. This is in
accordance with the error-free MPSK results given earlier. As
expected for DD-1M, the S curve slope for QPSK is reduced
compared to BPSK.

The timing detector performance is summarized (for o =
0.4) in Figs. 8, 9, and 10. The S curve slope at 7 = 0, 5(0),
and normalized PSD at dc, S(0), are plotted. In Fig. 10 the
frequency offset was the same as that used in Section IV
(0.0011 cycles per symbol period). For each figure, lines show
simulation results and nearby symbols show values predicted
from (23), (25), (27), and (29). Two versions of the lower
bound (30) have also been plotted on Fig. 9.

VI. CONCLUSION

New results have been derived for the one-sample-per-
symbol decision-directed timing detector, DD-1, concerning
the S curve and detector variance at low signal-to-noise
ratios. The performance has been compared to the two-sample-
per-symbol nondecision-directed algorithm, NDD-2, which
required an analysis of its correlation properties.

Results presented in figures provide some indication of how
the performance of DD-1 degrades at lower signal-to-noise
ratios due to decision errors. For example from Fig. 9, at
a = 0.4, the DD-1 and NDD-2 approaches could be expected
to give about the same timing jitter at an E; /Ny of 6 dB. At
3 dB, the standard deviation of the timing jitter in the one-
sample-per-7" DD-1 system would be worse by approximately
25%. Without prior phase recovery, for BPSK at 6 dB the DD-
IM would have approximately 75% more timing jitter than
the two-sample-per-T" system, for the same loop bandwidth.
Finally, it should be remembered that channel bandwidth has
a major effect on the relative performance of these schemes,
as indicated in Figs. 6 and 7.

APPENDIX A
MEAN VALUE OF THE DD-1 ALGORITHM
FOR BPSK WITH NO PHASE OFFSET

We require the expected value of z,. Since BPSK is
assumed, a, = *1. From (1)

E{z,(7)} = B{zpan_1} ~ E{zp_14n} (A1)
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where z and a are both functions of the transmitted symbols
and the noise samples.

Assuming that z,, is a function of the limited range of
symbols denoted by a in (7), as well as v,, the first term
above is

E{xnafn—l} = ///pA,N(aa Un, Vn-l)(yn(a) + Vn)
“Gp-1dvp_1dvp, da  (A2)

where p4 n(-) is the joint probability density function of
the discrete valued transmitted symbols and the continuous
valued noise samples. We have simplified the notation of y, (a)
from (4). All integration limits are from —oo to 400 unless
otherwise shown. The integration with respect to a represents
multiple integrations over each of the independent symbols
that contribute to a. The symbol estimate &,_; is a function

of ¥,-1 and v, according to the rule
Gn-1=1 if yn~1(a) +vp_1>0
= —1 otherwise.

(A3)

We can therefore split (A2) into

E{mndn—l} = /// pA,N(aa VUn, Vn—l)
Yn—1

(yn(a) + v, dl/n 1 dI/n da

///wn IPAN(a Vn, Vn—1)

(yn(a) + Vn) dv,_1 dv, da. (A4)

Now consider the form of the joint density function used
above. The transmitted symbols are independent and identi-
cally distributed. The real-valued noise samples are Gaussian
distributed, with variance o2. In addition the samples v, and
v, -1 are independent due to the symbol spaced sampling and
the use of root Nyquist receive filters, see (C6). We may
therefore write the joint density function as

PaN(8; Un, vn_1) = pa(a)pn (Vn)PN (Vn-1) (AS)
where
PN (vm) = (2r0?)~/2emval20” (A6)
and
pa(@) =2"C™0N "5(a; — an_m)

Vo

. 6(@2 - an_m+1) e 6(a2m+1 - a'n+m) (A7)

such that @ = (a1, oz - - 02m41) With a; € {1, +1} for
t=1,---2m+ 1. The summation in (A7) is over all possible
values of the set of transmitted symbols that are assumed to
contribute to the current sample x,,, i.e., & can take on 22™+!
values from (-1, -1, —1,--- = 1) 10 (1, 1, 1,---1).

Using (AS) and (A6) in the first term of (A4) and rearrang-
ing, gives

[ra@ [ontnuna) + )

o0
. / @ (2#02)"1/26_":—1/2‘72 dvp_1dv, da. (A8)
~Yn—1(Q
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The innermost (14), is
n-1(8)
(14 erf (@
We can therefore write the first term of (A4) as

ﬁA(ﬂ)% (1 +erf ( y"\;—;((}))) ﬁnN(un)(yn(a) + 1) d,,n(it;)

It can be seen that the additive noise term v, in this expression
will not contribute to the final result (since E{v,} = 0). The
integral of py(vy) from —oo to oo is 1, so we are left with

/PA(a)yn(ﬂ)% (1 +erf (y"\;—;g“))) da.

In a similar way the second term of (A4) can be
evaluated. Now the innermost integral in (A8) becomes

11 _ Yn—1(@)
2(1 erf (————\/20 )

The first and second terms of (A4) can therefore be com-
bined to give

[ra@u@ert (2522 da.

So far we have only dealt with the first term of (Al). The
second term may be handled by noting that since

E{znan-1} = E{znt10n}
~ [rs @y @ert (2202

so from symmetry

E{zn,_16n} = /pA(a)yn_l(a) (y\;ga)) da

integral, using equal to

(A10)

(Al1)

) da (Al12)

hence, overall

B(en()} = Fa{ et (202 (01@) - sn-s(a) .

2
v (A13)

The expectation in (A13) is only with respect to transmitted
symbols. It may be evaluated for different values of 7 by
choosing an appropriate value of m to limit the number of
symbols in @ and using (A7) and the property of delta functions
to give

B{za(r)} = 27CmD S

Vo

et (202 ) s(@) ~ o) A1)

where a takes on all of the 2°™+1 possible values.

APPENDIX B
VARIANCE OF THE DD-1 ALGORITHM
FOR BPSK WITH NO PHASE OFFSET

In order to determine the variance of the DD-1 algorithm
the expectation E{2Z(7)} must be determined. The variance is

E{z;(1)} = (B{z(7)})?
where E{z,(7)} has been determined in Appendix A.

var (z,(7)) = (B1)
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From (1) and (4)

E{ZZL(T)} = E{Ii} = 2E{2nTn-18nn_1} + E{mi—l}

(B2)
E{z2} = E{yi(a)} + 2E{y. } E{vn} + E{v2} (B3)
= E{yi(a)} + o? (B4)

as y, and v, are independent, and as v; has zero mean and
o? variance. In addition

E{z3} = B{a}_}. (B5)

Now E{z,Tn_1GnGn-1} is a function of y,, Yn_1, Vn, and
Vn—1. AS GnGn_1 can take on values 1 and —1, the expectation
can be separated into 2 parts:

Gn0n,—1 =1 called region 1 defined as

(4, =1 and G,—1 =1) or
(@&n=-1 and @&, =-1)

which may be written as

(yn(a@) + v, >0 and y,_1(a)+v,—; >0) region la
(B6)
or
(yn(@) + vn <0 and y,—1(a)+v,—1 <0) region 1b
(B7)
and
GnGn—1 = —1 called region 2 defined as
(@n=1 and a,-1=-1) or
(@n=-1 and Gn—;=1)
which may be likewise be written
(yn(a) + v, >0 and y,_1(a)+v,_1 <0) region 2a
(B3)
or
(yn(a) + v, <0 and y,_1(a)+ vp—1 > 0) region 2b.
(B9)

So E{nZn-18rd4,_1} becomes E{z,z,_1} evaluated over
region 1 minus E{z,z,_1} on region 2.

Evaluating F{z,z,_1} on region la, and using the same
notation as (A2),

E{zpzn-1}l1a
[ pante v vas)onta) o)
- (yn_y:(a) y—ruln_l) dv,_1 dv, da. (B10)
Similarly
E{znzn-1}1p

—Yn “Yn-—-1
= // / pA,N(0'7 Vn, Vn—l)(yn(a) + Vn)
“(Yn-1(@) + vp_1) dvp_1 dvy, da. (B11)
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The evaluation for region 2 takes a similar form. Expanding
(B10) first,

Elonaitha= [ [ °° / °° PA@PN (va)pN (ae1)

: (yn(a)yn—l("') + yn(“)l’n—l
+ Yn-1(a)vp + vntn_1) dvp_1 dv, da
(B12)

and using the same assumptions as in part A, this becomes

/ P 4(@)yn (8)yn—1(a) / (2mo?)~1/2e V20"
—yn(@)

o0 .
- / (27['0’2)_1/28_'/’2‘—‘/262 dv,_1 dv, da
"yn—l(a)

+ / pA(a)y"(“)/_o:nm)

oo -
. / (2#02)_1/26—11’21—1/2021/"_1 dvp_1 dv, da.
—Yn-1(@)

(27r02)—1/26—u;‘1/2o-2

)
2 2
(27r02)—1/2€—un/20' Un,
—yn (@

+ /pA(a)ynfl(a)

oo P
. / (27r02)"1/26°"i~1/2"2 dvn_1dv, da
Yn—1(@)

+ /PA(“)/ji(w

o P .
. / (27r02)_1/23_"72l—1/2"2un_1 dvy,_1 dv, da.
—Yn-1(@)

(27”72)—1/26—1/3/202”"

(B13)

It may be shown that

/oo
“Yn—1

To simplify notation let

(27r02)_1/2e_"i*‘/2”2 VUp_1dvp_1
= U(27r)_1/26_y3‘*‘(a)/202.
) — e—yiil(a)/Qa'z'

en—1(a (B14)

Using the erf () result after (A8), (B13) can be writien as
E{znzn-1}1a = /PA(G) [yn(a)yn_l(a)%
(o)
+ yn(ﬂ)% (1 +erf (y\;g;))) \/LQ_W
+ yn~1(ﬂ)% (1 +erf (%\;—;g’))) \/(;—ren(a)

+ gen(a)en—l(a)} da.

en_l(a)
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The other regions as defined by (B7) through (B9) are evalu-
ated as per region la and when combined result in

B simin 1} = [pa@) [yn(aJyn_1<a)
(585

+ %yn(a)en—l(@ erf (%‘?)

20 yn-—l(a)
+ e @ (M)
2
+ %en(a)enq(a)J da. (B16)

When (B16) is written as an expectation and combined with
(B4) and (B5) we have

B{2(r)} = Ea{zy,%(a) 2 [yn(a)yn_ma)

“()(2)

+ et (20 @)enea(@) + e01(@)

202 9
+ Ten(a)en,l(a) + 20°. (B17)
This formula may be evaluated numerically for different values
of 7 by replacing the expectation with a summation over all
possible values of a containing 22™*! symbols [as for (A14)].

APPENDIX C
CORRELATION ANALYSIS FOR NDD-2
FOR BPSK AND ZERO TIMING OFFSET

An outline will be given of how an expression for the
correlation between output samples of the NDD-2 timing
detector can be derived for the special case when 7 = 0.
We require E{cncn_m} where ¢, is defined in (28).

Since BPSK with no phase offset is assumed, the quadrature
component of (2) is omitted. As 7 = 0, E{up,} = 0 so
Ctn = Upn, hence

Rec(m) = E{unun_m}
= E{zn—l/2(mn - zn—l)l‘n—m—l/Q(znfm - znfmfl)}
= E{mn—-l/2mn—m—1/2(znzn—m —Tpn—-1Tn-m

— TnTn—m-1 +In—lxn—m—l)}~ (Cl)

The four terms which contribute to this equation can be written
as

:tE{‘Tn—1/2xn—m—1/2xn—rzn—m—s} (€2)
where 7, s € {0, 1} and the sign should be + if r = s and —
if r # s. Now consider the symbol midpoint samples in this
equation, i.e., ,, T,—1, etc. As 7 = 0, we see from Section I

of the paper that only one symbol contributes to these samples,
for example =, = a, + v,. The general term can therefore
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be written, using (5),

E{ <Z aign-1/2—i + Vn—1/2)

i (s1) (n1)

. (Z Ajgn—-m-1/2—j5 + Vn~m—1/2)

7 (s2) (n2)

(n—r + Vn—r)(Gnm—s — Vn—m—S)} (C3)
(s3) (n3) (sa) (na)

where the label s; indicates the first signal component, 7 is
the first noise component, etc.

When (C3) is expanded, a sum of 16 product terms is
produced. The all-signal product term is

E{81828384}

=F Un—rAn—m—g E Gign—-1/2—1 E Aj9n—m—1/2~j
i J
(C4)

As the symbols are uncorrelated and equal to %1, the only
contributions are shown in (C5a-c) below.

ifr=m+s and 1=

we get Zgn—1/2gn—m-—l/2 (C5a)
n
ifr#m+s, t=n—r and j=n-m-—s
we get gr_1/29s—1/2 (C5b)

ifrZm+s, j=n—-r and ‘t=n-m-—s

WE g€l Gsim—1/29r—m—1/2- (C5¢)

Note that since (r, s) take on the 4 possible values (0, 0), (0,
1), (1, 0) and (1, 1) in each evaluation of R..(m), then (C5a)
will only contribute to the autocorrelation when m = —1, 0, 1.
On the other hand, (C5b) and (C5c) must be considered in
R..(m) for all values of m. However, considering (C5b) when
(say) m = 2, since g_1/2 = g1/2, it can be noted that the
contribution arising when (r, s) = (0, 0) will be cancelled by
the contribution when (r, s) = (0, 1) (since the latter must
be subtracted while the former is added.) Thus, (C5b) will not
contribute when |m| > 1.

Of the signal times noise terms, all the 8 terms with one
signal or one noise component must have an expected value
of zero. Of the remaining 6 terms with two signal and two
noise components, first it is easy to show that

E{v(t)w(t+t1)} = ag(t1) (C6)
where 02 = E{v%(t)} as before, then
E{sssyning} =c? ifm=0 andr=s (CT7a)

E{sison3ns} = Zgn——l/Zgnfmfl/ZUZ ifr=s+m
" (CTb)

E{s1s4nan3} = E{sassning} = gs+m—1/2gr—m—1/2<72
(C7¢)
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E{s1s3nans} = E{s2s4nins} = gr_1/295—1/20°. (C7d)

All the components represented by (C7d) will cancel out
for the reasons indicated above. Similarly, (C7¢) will not
contribute when m = 0, (C7a) will only contribute when
m = 0, etc.

Finally, the last product term from (C3) will be the all-noise
term. Using the identity [13]

E{Vn—1/2Vn—m—l/2Vn—rVn—m—s}
= E{Vn—1/2Vn—m-—1/2}E{Vn—rVn—m—s}
+ E{Vn—1/2Vn-'r}E{Vn—m—l/zl/nfmfs}

+ E{vn_1/9Vn-m—s} E{Vn_m_1/2Vn—r} (C8)
the first part of this gives
o ifm=0 andr=s (C9a)
while the last two components give
Gr-1/29s-1/20" + Gaym—1/29r—m—1/20" (C9b)

Expressions for the desired autocorrelations can now be writ-
ten down by inspection, after considering all the terms repre-
sented by (C5), (C7) and (C9). All values of r and s must be
taken into account, as indicated above, for the particular value
of m being considered. For m = 0 the result is therefore

R..(0) = 2293—1/2 —4gf/2 +20%( 1+ 29721—1/2 +20%.

(C10)
The first factor of 2 in this equation arises since (r, s) = (0, 0)
and (1, 1) both satisfy (C5a). The next factor of —4 is caused
by (r, s} = (0, 1), (1, 0) satisfying both (C5b) and (C5c),
and in each case r # s so all the terms are negative. For the
o2 terms, only (C7a) and (C7b) give a net contribution, whilst
for the o* terms only (C9a) appears in (C10). In a similar
manner the results for other values of lag are

Ree(1) = 291729372 + 9%/2 - g§/2 - Zgn—l/29n+1/2
n

+02 (491/293/2 - 29?/2 - 29:%/2

- Zgn—1/29n+1/2)

+0%(291/293/2 — 9312 — 93/2) (C11)
Ree(m) = (29m-1/29m+1/2 = Gom—1/2 — 92at1/2)
“(1+20%+0%  iflm|>1. (C12)
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