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Efficient Interpolators and Filter Banks using Multiplier
Blocks

A. G. Dempster and N. P. Murphy

Abstract—We examine the use of efficient shift-and-add multiplier struc-
tures and multiplier blocks to reduce computational complexity in filter
banks. This is more efficient than treating each bank filter separately. We
also examine the Farrow structure, which is used in interpolators. Applying
multiplier blocks makes this structure cheaper than the more recognized
Lagrange interpolator.

I. INTRODUCTION

In this section, we review existing work on multiplier blocks and
the Farrow structure. We introduce the application of multiplier blocks
to filter banks in general in Section II and to the Farrow structure in
particular in Section III. Section IV examines an example of applying
these methods.

A. Multiplier Blocks

A multiplier block is a network of shifts and adders that performs
multiplication by one or more coefficients very efficiently (using few
adders) by exploiting redundancy between multipliers. The problem of
reducing the number of adders used in a shift-and-add multiplication
process has been widely examined. For a single multiplication, we de-
vised a method guaranteeing minimum adders for short wordlengths
[1] and the most efficient algorithms for longer wordlengths [2], [3].
Where several products of a single multiplicand are required, multi-
plier blocks can exploit redundancy between multipliers, requiring far
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fewer adders [4], [5]. The transposed direct form of the FIR filter ben-
efits greatly from using multiplier blocks: more than for other leading
techniques [6]. However, several IIR structures are also suitable for
multiplier block use, and significant savings can be made [7]–[10]. In
this correspondence, we examine the savings when banks of FIR filters
use multiplier blocks to perform coefficient multiplications.

B. Filter Banks and the Farrow Structure

Filter banks (parallel connections of digital filters) are used in many
signal processing applications including fractional delay filter design.
The “Farrow structure” [11] has been used in this application. An ideal
fractional delay filter (which delays its input by a nonintegral number
of samples of, say,D) has frequency response

H(ej!) = e
�j!D (1)

or impulse response

h(n) = sinc(n�D) for all n (2)

which is infinite and noncausal and, hence, must be approximated. A
popular and effective method of approximating this impulse response
uses an FIR filter performing Lagrange interpolation, which has coef-
ficients [12]

h(n) =
NY
k=0
k 6=n

D � k

n� k
for n = 0; 1; 2; � � � ; N: (3)

This works well for constant delayD, but the coefficients must be
recalculated each timeD changes. The aim of Farrow’s method [11] is
to avoid this recalculation. Ifd is the fractional part ofD (i.e.,D = l+d
for integerl, and0 � d < 1), then a polynomial of orderP in d is used
to approximate each coefficient in (2)

hd(n) =
PX

m=0

cm(n)d
m (4)

which leads to transfer function

Hd(z) =
NX
n=0

hd(n)z
�n

=
NX
n=0

"
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cm(n)d
m

#
z
�n

=
PX
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cm(n)z
�n

#
d
m

=
PX

m=0

Cm(z)d
m (5)

whereCm(z) =
PN

n=0
cm(n)z

�n. This structure can be imple-
mented as in Fig. 1, i.e., a filter bank. Importantly, the coefficients of
the filters are constant, regardless of the delayd.

The Farrow structure can be used to replace single-filter interpolators
such as the Lagrange interpolator. In fact, because the Lagrange inter-
polator itself uses a polynomial method of approximation, the Farrow
structure can exactly replicate the single Lagrange interpolator filter
with N = P [13].

Typically, the Farrow structure is only a useful replacement for a
single filter, where the delay is different for each output sample [12]
because its fixed coefficients save computation complexity. Obviously,
for a constant delay, one filter requires less effort thanP filters, and
therefore, the Farrow structure is less attractive. However, another
useful application of the Farrow structure that we propose here is that
of a regular interpolator, i.e., a structure that produces interpolated
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Fig. 1. Farrow structure for polynomial approximation of filter coefficients.

outputs at several (fixed) delay intervals. In multirate signal processing
applications, where a signal is being “upsampled” by a factorM , a
regular interpolator or “expander” is used to reconstruct signals. In
such a structure, the lower part of Fig. 1 (the constant multipliers and
sample delay registers) needs to be replicatedM times: once for each
delay value. However, only one Farrow filter bank is required. Such a
structure is shown in Fig. 2. Although thedi “delays” are fixed, there
are several of them, and the extra computations required by the Farrow
structure are effectively amortized across the range of delays.

II. FILTER BANK STRUCTURESUSING MULTIPLIER BLOCKS

In order to use multiplier blocks, we require a structure that performs
several multiplications of a single multiplicand. The more multiplica-
tions that can be grouped this way, the greater the saving will be [4],
[5], [7]–[10]. Fig. 3 shows that for a simple filter bank of FIR filters,
all of the coefficients in the filter bank can be incorporated into a single
block. Fig. 3(a) is the usual direct-form filter bank. If we remove link
A and transpose each separate filter, we get the structure in Fig. 3(b)
(without link B). Add link B, and all the coefficients multiply a single
data input and can be placed in a single multiplier block, as indicated.

Fig. 3(b) is not canonic in delays. There areNP (N = filter order,
P = Farrow polynomial order) delays in the structure, whereas a struc-
ture with onlyN delays is shown in Fig. 4, which hasP multiplier
blocks, each of (N +1) coefficients. The tradeoff between the number
of blocks and the number of delays is analogous to the same tradeoff
that occurred when examining direct forms I and II for IIR filters [7],
[8]. This structure is the result of starting with the tapped delay line
structure for the filter bank (i.e.,N delays, each of which is tapped
for each filter), transposing, blocking, and transposing again. The final
transposition is important in order to produce the outputsyi(n). How-
ever, the structure appears to have i) not all products of a single multi-
plicand, and ii) the structural adders embedded in the multiplier block.
Neither of these facts presents a problem; in fact, each filter in the bank
is the same as if it were designed using multiplier blocks as in [4] and
[5] and was simply transposed after the design, leaving the basic op-
eration of the filter unchanged. Transposition following the multiplier
block design was proposed in the original paper on the subject [16]. In
such cases, the total number of adders (i.e., structural adders plus mul-
tiplier-block adders) remains the same before and after transposition.

III. FARROW STRUCTURESUSING MULTIPLIER BLOCKS

The Farrow structure of (5) is shown in Fig. 1, which is a bank of
filters, the outputs of which are summed after multiplication by powers
of d and implemented as identicald multipliers. We aim to minimize
the number of numerical operations performed in such structures, using

Fig. 2. Farrow structure used to generate several constant delays, as in a regular
upsampler or “expander.”

the method in the previous section. Previous authors have used similar
simplifications for specific simple examples of Farrow filter banks [13],
[15].

If the Farrow structure is used to implement a regular grid of delay
points, an appropriate structure is that in Fig. 2, where it can be seen that
a multiplier block could replace theM products of the output ofCP (z).
Further simplifications result from network manipulations. First, the
delay value multipliers can be drawn back through the delay registers,
as in Fig. 5, to more directly reflect (5). The output of filterp in the bank
is multiplied by a coefficient setfdp

0
; d

p
1
; � � � ; dpM�1p; d

p
Mg, which

can be implemented as a multiplier block. There is then a large Farrow
bank filter multiplier block of(P +1)(N +1) elements plusP blocks
[notP +1 because the C0(z) output requires only coefficient value 1],
each ofM � 1 coefficients (notM because the zero-delay filter has
coefficients of 0, except for one coefficient 1). We call this theFarrow
block I.

Alternatively, if we transpose just they0 filter of Fig. 5, we obtain
Fig. 6(a), with a different block of coefficients. Designing the multiplier
block and transposing again for all filters gives Fig. 6(b), with structural
adders having “disappeared” inside the multiplier blocks, as in Fig. 4.
Effectively, outputm is attached to a block producing the coefficient
setfdm; d2m; � � � ; d

P�1
m ; dPmg. In this configuration, there is the large

Farrow bank filter multiplier block, of(P +1)(N +1) elements, plus
M � 1 blocks, each ofP . We call thisFarrow block II.

IV. DESIGN EXAMPLES

A. Experiment Description

In multirate signal processing applications, where a signal is being
“upsampled” by a factorM , signals can be reconstructed by a regular
interpolator or “expander,” which can be implemented as a filter bank.
We examined several cases of this type of filter:

In multirate signal processing applications, where a signal is being
“upsampled” by a factorM , signals can be reconstructed by a regular
interpolator or “expander,” which can be implemented as a filter bank.
We examined several cases of this type of filter:

i) implementation as single Lagrange interpolator filters, each pro-
ducing one interpolation point implemented as in Fig. 4 (we ex-
amine this type of filter in detail in [14]);
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(a) (b)

Fig. 3. How to incorporate all coefficients of a filter bank into a single block.

Fig. 4. Alternative multiplier block arrangement for a filter bank.

ii) implementation of Lagrange interpolation filters, with all coef-
ficients implemented as a single multiplier block as in Fig. 3(c);

iii) implementation as Farrow structure filters as in the bank in
Fig. 4;

iv) implementation as a Farrow structure filter bank, using both the
structures ofFig 3(c)..

For the two Farrow cases iii) and iv), the delay multiplier section,
which can be dealt with separately, was designed using Farrow blocks
I and II of Figs. 5and6(b).

The example has Lagrange order 3, upconversion rate 8, and
wordlength 12 bits. The Farrow coefficients for a third-order Lagrange
filter are

F (n; m) =

2
664

�0:0625 0:0417 0:2500 �0:1667

0:5625 �1:1250 �0:2500 0:5000

0:5625 1:1250 �0:2500 �0:5000

�0:0625 �0:0417 0:2500 0:1667

3
775

whereF (n; m) = cm(n), as used in (5). In other words, each row
of F is used to generate a single coefficient of the Lagrange filter. The
delays are spaced at one eighth sample intervals starting at the midpoint
(1.5) less half a sample, i.e., the delay valuesD that are entered into
(3) are 1.0000, 1.1250, 1.2500, 1.3750, 1.5000, 1.6250, 1.7500, and
1.8750. The resulting coefficients for the Lagrange filters are

L =

2
666666666664

0:0000 1:0000 0:0000 0:0000

�0:0342 0:9229 0:1318 �0:0205

�0:0547 0:8203 0:2734 �0:0391

�0:0635 0:6982 0:4189 �0:0537

�0:0625 0:5625 0:5625 �0:0625

�0:0537 0:4189 0:6982 �0:0635

�0:0391 0:2734 0:8203 �0:0547

�0:0205 0:1318 0:9229 �0:0342

3
777777777775

where each row ofL is a set of filter coefficients. Note that the first
row is an impulse response because there is no need for interpolation,
and the fifth row matches the first column ofF because this is the zero
delay case in the middle of the filter.

The coefficients in the Farrow blocks I and II are derived from the
values ofd(�0:5000 � � � 0:3750) that correspond to theD values
(1:0000 � � � 1:8750) used to generateL. The coefficients can also be
represented in an array with Del(m; p � 1) = dpm as used in Figs. 5
and 6. Farrow block I coefficients can be read along the columns, and
Farrow block II can be read along the rows as in

Del =

2
666666666664

1:0000 �0:5000 0:2500 �0:1250

1:0000 �0:3750 0:1406 �0:0527

1:0000 �0:2500 0:0625 �0:0156

1:0000 �0:1250 0:0156 �0:0020

1:0000 0:0000 0:0000 0:0000

1:0000 0:1250 0:0156 0:0020

1:0000 0:2500 0:0625 0:0156

1:0000 0:3750 0:1406 0:0527

3
777777777775

:

Note that columns 1 and row 5 are effectively “free” since no mul-
tiplications are required.

In order to get fixed-point coefficients of wordlengthw, the relevant
coefficients inL and Del, all of which are less than 1 (a coefficient of
1 requires no multiplier), are multiplied by2w (in this case 4096) and
rounded. The coefficients inF , some of which exceed 1, are multiplied
by 2w�dlog2(maxn;m(F ))e (in this case 2096) and rounded. Multiplier
blocks can then be designed using the RAG-n algorithm [4].

We now consider costs of the structural elements not associated
with multiplication. For either type of Lagrange filter, there areMN

adders. There areN delays when using separate filters andMN

delays when all coefficients are in a single block. For the Farrow
structure, there are(P + 1)Nf= N2 +N because we are generating
Lagrange coefficientsg adders in the filter bank andPM adders in the
delay blocks I and II (one adder can be subtracted from this total for
each zero-valued coefficient). When using separate filters, there are
only N delays, and when all coefficients are in a single block, there
are(P + 1)N delays.

B. Results

The adder costs are shown in Table I. The total cost for each of
the implementations has been broken down into the adders due to mul-
tipliers; structural elements (adders and delays); and, for the Farrow
structures, the delay blocks I and II. Delay elements cost 0.2 adders,
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Fig. 5. Farrow structure for several constant delay outputs. Note that the outputs of each bank filter are then multiplied by several coefficients, which can be
gathered into multiplier blocks. The highest order coefficient block is shown dotted (Farrow block I).

(a) (b)
Fig. 6. (a) Single delay filter within the Farrow structure transposed so that the coefficients (those within the dotted region) can be implemented ina multiplier
block. (b) Whole filter with several of these stages, retransposed (Farrow block II).

TABLE I
ADDER COSTS FOR THEFOUR TYPES OFFILTER DESIGNSUSED IN THEEXAMPLE: i) LAGRANGE FILTERS WITH COEFFICIENTSBLOCKED FOREACH INDIVIDUAL

FILTER. ii) L AGRANGE FILTERS WITH ALL COEFFECIENTS IN THEBANK BLOCKED. iii) I NDIVIDUALLY BLOCKED FARROW STRUCTURE. iv)
BANK-BLOCKED FARROW STRUCTURE

which is consistent with earlier work (e.g., [6]). Of the two delay blocks
(Farrow blocks I and II), only the least costly is used for the total.

These results reveal some interesting things.

1) For both the Lagrange and Farrow implementations, the imple-
mentation with all coefficients in the bank in a single block is less
costly. In both cases, the gains made by including all coefficients

in a single block outweigh the penalty of using a few more delay
elements. This is consistent with earlier results [4], [7]–[9].

2) For this example, the Lagrange bank filter is the cheapest. How-
ever, despite the extra circuitry required by the Farrow structure,
it is not far behind. In work yet to be published, we have found
that the Farrow structure is better in some circumstances.
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On the Relationship Between the Overlapping Rounding
Transform and Lifting Frameworks for Reversible

Subband Transforms

Michael D. Adams and Faouzi Kossentini

Abstract—Recently, a new framework for reversible subband transforms
based on the overlapping rounding transform (ORT) has been proposed as
an alternative to the lifting framework. In this correspondence, we show
that the ORT framework is, in fact, a special case of the lifting framework
with only trivial extensions.

Index Terms—Lifting, overlapped rounding transform, reversible
integer-to-integer subband transforms.

I. INTRODUCTION

In order to efficiently handle lossless coding in subband coding sys-
tems, we require transforms that are invertible in finite-precision arith-
metic. Such transforms are said to be reversible. In [1], Calderbank
et al.showed that the lifting scheme [2] forms an effective framework
for constructing reversible transforms. Transforms utilizing this frame-
work have since found application in numerous coding systems, in-
cluding that of the emerging JPEG-2000 standard [3], [4]. More re-
cently, Jung and Prost [5] have proposed an alternative method for
constructing reversible transforms based on the overlapping rounding
transform (ORT). Although the ORT and lifting frameworks appear
quite different at first glance, they are, in fact, intimately related. In
what follows, we will show that the ORT framework is, in fact, a spe-
cial case of the lifting framework with only trivial extensions.

II. NOTATION AND OTHER PRELIMINARIES

Before proceeding further, a short digression concerning the notation
used in this correspondence is appropriate. The symbolsZ andRdenote
the sets of integer and real numbers, respectively. Matrix and vector
quantities are indicated using bold type. Forx 2 R, the notationbxc
denotes the largest integer not more thanx (i.e., the floor function), and
the notationdxe denotes the smallest integer not less thanx (i.e., the
ceiling function). Thez-transform of a sequencex[n] is denotedX(z).
For convenience, we also define the quantities

bX(z)cz
�

=
X

n2Z

bx[n]cz�n and dX(z)ez
�

=
X

n2Z

dx[n]ez�n

(i.e., bx[n]c $ bX(z)cz anddx[n]e $ dX(z)ez). Lastly, we note
some simple yet important properties of floor and ceiling operations.
Forx 2 Z and 2 R, the following identities hold:

bx+ c =x + bc (1)

dx+ e =x + de (2)
and

b�c = �de: (3)
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