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This works well for constant delaf, but the coefficients must be
recalculated each tim@ changes. The aim of Farrow’s method [11] is
to avoid this recalculation. if is the fractional partob (i.e.,D = I+d

Abstract—\We examine the use of efficient shift-and-add multiplier struc-  for integert, ando < d < 1), then a polynomial of ordef in d is used
tures and multiplier blocks to reduce computational complexity in filter ~ to approximate each coefficient in (2)
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banks. This is more efficient than treating each bank filter separately. We P
also examine the Farrow structure, which is used in interpolators. Applying ha(n) = Z cm(n)dm (4)
multiplier blocks makes this structure cheaper than the more recognized

m=0

Lagrange interpolator which leads to transfer function

N
I. INTRODUCTION Ha(z) =Y ha(n)z™"
In this section, we review existing work on multiplier blocks and ";O P
the Farrow structure. We introduce the application of multiplier blocks _ Z [Z cm(n)dm:| L
to filter banks in general in Section Il and to the Farrow structure in =0 |56
particular in Section Ill. Section IV examines an example of applying P [N
these methods. _ Z Z Cm(n)z_n:| g™
m=0 [Ln=0
A. Multipli -
p.lle-r Blocks. | _ Z o)™ 5)
A multiplier block is a network of shifts and adders that performs —

multiplication by one or more coefficients very efficiently (using few, ;o Cm(z) = ZN em(n)z~". This structure can be imple-
adders) by exploiting redundancy between multipliers. The problem r?lfented as in Fig. 1, Til.?e?, a filter bank. Importantly, the coefficients of
reducing the number of adders used in a shift-and-add muItipIicati% filters are constant, regardless of the delay

process has been widely examined. For a single multiplication, we dé-rq £arrow structure can be used to replace single-filter interpolators

vised a method gugrgnteeing minimum adders for short wordlengmh as the Lagrange interpolator. In fact, because the Lagrange inter-
[1] and the most efficient algorithms for longer wordlengths [2], [3] olator itself uses a polynomial method of approximation, the Farrow

Where several products of a single multiplicand are required, mulllg,c¢re can exactly replicate the single Lagrange interpolator filter
plier blocks can exploit redundancy between multipliers, requiring f%ith N = P[13].
Typically, the Farrow structure is only a useful replacement for a
single filter, where the delay is different for each output sample [12]
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Fig. 1. Farrow structure for polynomial approximation of filter coefficients. _D‘ ............................ -

outputs at several (fixed) delay intervals. In multirate signal processil
applications, where a signal is being “upsampled” by a fadfqra du du b Dd'" @ ym(n)
regular interpolator or “expander” is used to reconstruct signals. |-~ |

such a structure, the lower part of Fig. 1 (the constant multipliers and

sample delay registers) needs to be replicdtetimes: once for each Fig.2. Farrow structure used to generate several constant delays, asin aregular
delay value. However, only one Farrow filter bank is required. Suchugsampler or “expander.”

structure is shown in Fig. 2. Although tlle “delays” are fixed, there

are several of them, and the extra computations required by the FarW method in the previous section. Previous authors have used similar

structure are effectively amortized across the range of delays. simplifications for specific simple examples of Farrow filter banks [13],
[15].
Il. FILTER BANK STRUCTURESUSING MULTIPLIER BLOCKS If the Farrow structure is used to implement a regular grid of delay

- . rlH)oints, an appropriate structure is thatin Fig. 2, where it can be seen that
In order to use multiplier blocks, we require a structure that performis ltinlier block could replace the products of th tout f
several multiplications of a single multiplicand. The more multiplic g muttipherblock couldreplace products ofthe outpu P(.Z)'
tions that can be grouped this way, the greater the saving will be ?E rther S|mpI|f|c§it|pns result from network manipulations. Flrstz the
[5], [7]-[10]. Fig. 3 shows that for a simple filter bank of FIR filters I_ay yalue multlpller_s can be drawn back through the_delay registers,
all of the coefficients in the filter bank can be incorporated into a singfe® " ITtlg.I_S,dtobmore dlrf(?_ct_ly rteflecCtZJSS)C.l;I'he ouzlp])gut of fllf;n the Efnhk
block. Fig. 3(a) is the usual direct-form filter bank. If we remove link> MU1PlI€d by a Coetlicien s_e{_ 0r 10 1T SM—1p w}, whic

be implemented as a multiplier block. There is then a large Farrow

A and transpose each separate filter, we get the structure in Fig. By o€ -
(without link B). Add link B, and all the coefficients multiply a singlea(t‘gajlkfllter multiplier block of P +1)(XV +1) elements plug blocks

data input and can be placed in a single multiplier block, as indicate[(q.OtP+ | because t_h?@’z) outputrequires only coefficient v_alue 1,
Fig. 3(b) is not canonic in delays. There a¥e® (N = filter order each ofM — 1 coefficients (notl/ because the zero-delay filter has

P = Farrow polynomial order) delays in the structure, whereas a str (iqeflzcilents of 0, except for ane coefficient 1). We call this Bagrow
ture with only N delays is shown in Fig. 4, which has multiplier ock 1

blocks, each of ¥ + 1) coefficients. The tradeoff between the numbe{(#_AltematNely’ if we transpose just thg filter of Fig. 5, we obtain
0

of blocks and the number of delays is analogous to the same trad # i(a)av;nth adlfff_erentblt_)cr of c”ofﬁ:ﬂuer!ts. D'SS|g6n|tr)lgthtehmtJItlr{[I|erl
that occurred when examining direct forms | and Il for IIR filters [7], ckan r_anqusmg again ”o_ra_ HIers gives 1g. (b), wi structura
adders having “disappeared” inside the multiplier blocks, as in Fig. 4.

[8]. This structure is the result of starting with the tapped delay IinI(:ef_f ivel toutm is attached to a block producing th ficient
structure for the filter bank (i.ely delays, each of which is tapped ec |vey2, oulpu Pl_sla ?DC €d fo a block producing the coefiicien
t{dm, dim, -+, dm , din}. Inthis configuration, there is the large

. . . . . . S
e e, e "Bhrow it il ook o+ ) + 1) clemens,
) UM — 1 blocks, each of?. We call thisFarrow block II.

ever, the structure appears to have i) not all products of a single m
plicand, and ii) the structural adders embedded in the multiplier block.

Neither of these facts presents a problem; in fact, each filter in the bank IV. DESIGN EXAMPLES
is the same as if it were designed using multiplier blocks as in [4] and Experiment Description

[5] and was simply transposed after the design, leaving the basic op-

eration of the filter unchanged. Transposition following the multiplief In multirate signal processing applications, where a signal is being

block design was proposed in the original paper on the subject [16]._Hlosampled” by a factoM, signals can be reconstructed by a regular

such cases, the total number of adders (i.e., structural adders plus ?_rpolat_or or “expander,” which (_:an be |mplemented as afilter bank.
e examined several cases of this type of filter:

tiplier-block adders) remains the same before and after transpositioh. . ) . N . . .
In multirate signal processing applications, where a signal is being

“upsampled” by a factoM , signals can be reconstructed by a regular
lll. FARROW STRUCTURESUSING MULTIPLIER BLOCKS interpolator or “expander,” which can be implemented as a filter bank.
The Farrow structure of (5) is shown in Fig. 1, which is a bank offe examined several cases of this type of filter:
filters, the outputs of which are summed after multiplication by powers i) implementation as single Lagrange interpolator filters, each pro-
of d and implemented as identicalmultipliers. We aim to minimize ducing one interpolation point implemented as in Fig. 4 (we ex-
the number of numerical operations performed in such structures, using  amine this type of filter in detail in [14]);
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Fig. 3. How to incorporate all coefficients of a filter bank into a single block.
¥a(n) where each row of is a set of filter coefficients. Note that the first
Multiplier Block S row is an impulse response because there is no need for interpolation,
and the fifth row matches the first column Bfbecause this is the zero
x(n) i i delay case in the middle of the filter.
»l 7! o ! | The coefficients in the Farrow blocks | and Il are derived from the
) y v values ofd(—0.5000 ---0.3750) that correspond to thé values
— yi(n) (1.0000- --1.8750) used to generaté. The coefficients can also be
Multiplier Block L represented in an array with Det, p — 1) = d&, as used in Figs. 5
and 6. Farrow block | coefficients can be read along the columns, and

Farrow block Il can be read along the rows as in
[1.0000 —0.5000 0.2500 —0.12507
1.0000 —0.3750 0.1406 —0.0527

Fig. 4. Alternative multiplier block arrangement for a filter bank.

i) implementation of Lagrange interpolation filters, with all coef- 1.0000 —0.2500 0.0625 —0.0156
ficients implemented as a single multiplier block as in Fig. 3(c); 1.0000 —0.1250 0.0156 —0.0020

ii) implementation as Farrow structure filters as in the bank in Del = 1.0000  0.0000 0.0000  0.0000
Fig. 4;

1.0000 0.1250 0.0156 0.0020
1.0000 0.2500 0.0625 0.0156

. o i 11.0000  0.3750 0.1406  0.0527 |
For the two Farrow cases iii) and iv), the delay multiplier section, te that col 1 and 5 frectively “free” si |
which can be dealt with separately, was designed using Farrow block: ote that columns ~ and row > are eflectively “iree” since no mul-

I and Il of Figs. 5and6(b). tiplications are required.

The example has Lagrange order 3, upconversion rate 8, anén order to get fixed-point coefficients of wordlength the relevant

wordlength 12 bits. The Farrow coefficients for a third-order Lagrangflé)r ZZ'S;E;Stsngfn 3::::) Iier;l 2|rleoInvleIr;:gneidrg;S(?ntTﬁi2 (1:a(:eczggg)lzrr]1t dOf

iv) implementation as a Farrow structure filter bank, using both the
structures ofig 3(c).

filt . . ; -
rerare —0.0625 0.0417 0.2500 —0.1667 rounded. The coefficients ifi, some of which exceed 1, are multiplied
05695 11250 —0.9500  0.5000 by 2t~ oga(maxa, m(FN1 (in this case 2096) and rounded. Multiplier
F(n, m) = B o - B blocks can then be designed using the RAG-n algorithm [4].

0.5625  1.1250  —0.2500 " =0.5000 We now consider costs of the structural elements not associated
—0.0625 _0'041_7 0.2500 0.1667 with multiplication. For either type of Lagrange filter, there areV
wheref'(n, m) = cm(n), @s used in (5). In other words, each rowaqqers, There aré/ delays when using separate filters amfN
of I is used to generate a single coefficient of the Lagrange filter. T%Iays when all coefficients are in a single block. For the Farrow
delays are spaced at one eighth sample intervals starting at the midpgiRicture, there are” + 1)N{= N + N because we are generating
(1.5) less half a sample, i.e., the delay valiigshat are entered into | agrange coefficienisadders in the filter bank anBlM adders in the
(3) are 1.0000, 1.1250, 1.2500, 1.3750, 1.5000, 1.6250, 1.7500, y blocks I and Il (one adder can be subtracted from this total for

1.8750. The resulting coefficients for the Lagrange filters are each zero-valued coefficient). When using separate filters, there are

0.0000  1.0000  0.0000  0.0000] only N delays, and when all coefficients are in a single block, there
—0.0342 09229  0.1318 —0.0205 are(P + 1)N delays.
—0.0547 0.8203 0.2734 —0.0391
I —0.0635  0.6982  0.4189 —0.0537 B. Results
~ | —0.0625  0.5625  0.5625 —0.0625 The adder costs are shown in Table I. The total cost for each of
—0.0537  0.4189 0.6982 —0.0635 the implementations has been broken down into the adders due to mul-
—0.0391 0.2734  0.8203 —0.0547 tipliers; structural elements (adders and delays); and, for the Farrow
| —0.0205 0.1318 0.9229 —0.0342 | structures, the delay blocks | and Il. Delay elements cost 0.2 adders,
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x(n)
‘ Y Y Y
Co(2) Cea(@ | Ci(2) Co(2)
d ! ) dv |di |do
VY WV /
dMP d IP doP )’o(n)
+
yi(n)

-

Fig. 5. Farrow structure for several constant delay outputs. Note that the outputs of each bank filter are then multiplied by several coeffatiecas, lveh
gathered into multiplier blocks. The highest order coefficient block is shown dotted (Farrow block I).

y(n) ............. X(n)
° IR I I
Ce(2) | [Cra(2) Ci(2) Co(VZ) Cu(z) | |Cp.i(2) Ci(2) | |Co(2)
A4 A
B i
o N I\ N e Y1(n)
X | 1
LT \ \ \ - Ym(1)

@ (b)
Fig. 6. (a) Single delay filter within the Farrow structure transposed so that the coefficients (those within the dotted region) can be implearmrantéplier
block. (b) Whole filter with several of these stages, retransposed (Farrow block II).

TABLE |
ADDER COSTS FOR THEFOUR TYPES OFFILTER DESIGNSUSED IN THE EXAMPLE: i) L AGRANGE FILTERS WITH COEFFICIENTSBLOCKED FOREACH INDIVIDUAL
FILTER. i) LAGRANGE FILTERS WITH ALL COEFFECIENTS IN THEBANK BLOCKED. iii) | NDIVIDUALLY BLOCKED FARROW STRUCTURE iv)
BANK-BLOCKED FARROW STRUCTURE

Config. Multipliers Struct Struct Farrow Farrow TOTAL
Adders  Delays Block I Block IT Adder Cost

Lagrange ind 33 24 3 - - 57.6

Lagrange bank 13 24 24 - - 41.8

Farrow ind 7 33 3 4 6 44.6

Farrow bank 4 33 12 4 6 43.4
which is consistent with earlier work (e.g., [6]). Of the two delay blocks in a single block outweigh the penalty of using a few more delay
(Farrow blocks | and 11), only the least costly is used for the total. elements. This is consistent with earlier results [4], [7]-[9].

These results reveal some interesting things. 2) For this example, the Lagrange bank filter is the cheapest. How-

1) For both the Lagrange and Farrow implementations, the imple- ~ €ver, despite the extra circuitry required by the Farrow structure,
mentation with all coefficients in the bank in a single blockis less it is not far behind. In work yet to be published, we have found
costly. In both cases, the gains made by including all coefficients that the Farrow structure is better in some circumstances.
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1. NOTATION AND OTHER PRELIMINARIES

Before proceeding further, a short digression concerning the notation
used inthis correspondence is appropriate. The synibatslR denote
the sets of integer and real numbers, respectively. Matrix and vector
quantities are indicated using bold type. FoE R, the notation x|
denotes the largest integer not more thgne., the floor function), and
the notation[z] denotes the smallest integer not less thaie., the
ceiling function). The -transform of a sequenagr] is denoted¥ (z).
For convenience, we also define the quantities

[X()]-2 Y le]]=™" and [X()]-2 Y [elnl]z ™"

ne€Z ne€Z

(i.e., |z[n]] « [X(2)]:and[z[n]] — [X(2)]:). Lastly, we note
some simple yet important properties of floor and ceiling operations.
Forz € Z andy € R, the following identities hold:

lz +~] ==+ 7] 1)
[£+ 7] =z + [7] 2

and
[=v] = =TT (3)
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