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Digital Filter and Square Timing Recovery

MARTIN OERDER, STUDENT MEMBER, IEEE, AND HEINRICH MEYR, FELLOW, IEEE

Abstract—Digital realizations of timing recovery circuits for digital
data transmission are of growing interest. In this paper, we present a new
digital algorithm which can be implemented very efficiently also at high
data rates. The resulting timing jitter has been computed and verified by
simulations. In contrast to other known algorithms, the one presented
here allows free running sampling oscillators and a new planar filtering
method which prevents synchronization hangups.

I. INTRODUCTION

IGITAL realizations of receivers for synchronous data

signals—baseband as well as QPSK or QAM signals—are
of growing interest as the capabilities of signal processors (for
low data rates) and application specific integrated circuits (for
high data rates) increase. These receivers have to include
algorithms for timing recovery. Several such discrete-time
algorithms have been proposed during the last few years [1]-
[3]. The majority of these solutions, however, include only the
integration of one part of the timing synchronization, namely,
the generation of some kind of timing error signal, into the
digital part of the receiver. This error signal is then typically
used to control an analog VCO which generates the sampling
strobes.

Due to the advantages of an integrated realization, however,
as much of the receiver as possible should be digital. This
means that the input signal should be sampled at a fixed rate by
a free running oscillator and all further processing should then
be done digitally using these samples. For symbol detection,
this means that the optimum decision metrics must be
generated from the given samples by some sort of interpolation
which is controlled by an estimate of the current timing offset
[4]. Therefore, we need an algorithm which determines this
absolute timing offset (not only a timing error signal) from the
given samples of the signal.

Such an algorithm is proposed in this paper. It is the digital
counterpart of the well-known continuous-time filter and
square timing recovery [5], [6], but it extracts the timing
information from the squared signal in a new way. The
analysis of the timing jitter presented in this paper leads to
results that are similar to the continuous-time case, although
the method of analysis is different.

Another main contribution of the paper is a new method of
hangup-free filtering of the timing signal. With all other
known timing recovery methods a major problem is that the
synchronization loop can get stuck at an unstable equilibrium
point. In this paper, we show how this can be avoided through
planar filtering of two-dimensional timing estimates.

The final section of the paper presents a digital realization of
the timing detector which is suitable for VLSI integration also
at high data rates.
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II. TIMING ESTIMATION

Here we consider the timing recovery for digital data
transmission by linear modulation schemes (PAM, QAM,
PSK). The received signal (PAM) or the equivalent low-pass
signal (QAM, PSK) can be written as

r(t)= i @, gr(t—nT—e(t)T)+n(t)

n=-—o

=u(t)+n(r). 1)
Where a, are the complex valued transmitted symbols with
mean power 1 (e.g., =1, £/ with QPSK), g(¢) is the
transmission signal pulse, T is the symbol duration, #(r) is the
channel noise which is assumed to be white and Gaussian with
power density Np, and e(7) is an unknown, slowly varying
time delay.

Now timing recovery means the estimation of the delay e(7)
to enable the optimal detection of the data. Because e varies
very slowly, in a digital realization, we can process the
received signal section by section. For each section A,,, we
can assume ¢ to be constant and obtain an estimate é,,. This
estimate must then be combined with the previous estimates
(i-e., it must be filtered) such that the optimal estimate €, is
obtained. The latter can be used to control an analog or digital
sampler for the detection.

Below we consider a special type of timing estimator which
is particularly suited for digital realization. It is similar to the
continuous-time filter and square synchronizer in that the input
signal is squared and the resulting spectral component at the
symbol rate is extracted by a filtering operation. In Fig. 1 the
algorithm is shown. After a receiving filter [impulse response
8r(?)] the signal 7(t) = r(¢) * ggr(¢) is sampled at rate N/T
(“**>’ denotes a convolution). We thus have samples

Fe=F(KT/N). Q)

The sequence

il kT kT
> ang | —-nT—eT)+i | —
oo N N

g(t)=gr(t) * gr(1)

represents the samples of the filtered and squared input signal
and contains a spectral component at 1/7. This spectral
component, which in a conventional synchronizer is extracted
by a PLL or a narrow-band filter is here determined for every
section of length LT (i.e., from LN samples) by computing
the complex Fourier coefficient at the symbol rate

2

€)

Xk =

with

(m+1)LN-1

X, = Xpe~I2mk/IN,

C))
k=mLN
As is shown in the next section, the normalized phase €, =

— 1/2= arg (X,,) of this coefficient is an unbiased estimate for
€.

0090-6778/88/0500-0605$01.00 © 1988 IEEE



TIN {m+1)LN-1 7

2 -j2rk /N -
—-—f = > X, e =15 argl }t==
rit) m e I % | K=mIN K Xn |27 9 c

Fig. 1. Discrete-time filter and square estimator.

The sampling rate must be such that the spectral component
at 1/7 can still be represented, i.e., N/T > 2/T. We use N =
4 for practical reasons. In the case of bandwidth efficient
modulation with a single-sided bandwidth of less than 1/7, the
receiving filter gg(¢) also has a single-sided bandwidth of less
than 1/7 and thus the squared signal has a single-sided
bandwidth of less than 2/7. Therefore, with N = 4, the
sequence x; completely describes the underlying continuous-
time signal.

III. STATISTICS OF THE ESTIMATE

In this section, we compute the statistics of the estimate €,
as a function of the pulse form g(f) and the noise power
density N, of the additive noise. We assume m = 0 and omit
the index m for the sake of simpler notation.

A. Mean
The mean of the estimate is

E[é1=F [——l arg (X)] . %)
2%

For small variance of the estimates we can linearize the arg-
operation.

E[é]=~~— arg (E[X))

T
-1 LN=1 _

=—arg< E E[xk]e-/Zwk/N> X ©6)
27 o

The linearization is valid, of course, only for |arg(X)| < =.
However, due to the subsequent filter operations, which are
discussed in Section IV, this is the only case of interest.

We first have to compute the expectation of the squared
signal

@ 2
s a,,g(kT/N—nT—eT)+ﬁ(kT/N)l:l .

n=—oo

Elx,]=E [
7

The expectation must be taken with respect to the joint

distribution of the symbols a, and the noise n(¢). Noise and

symbols are independent of each other. Therefore, and with

E[A(1)] = 0, the cross term of the binomial in (7) vanishes.
The remaining terms are

o 2
S a,8(kKT/N-nT- eT)\ ]

n=-co

Elx,=E [
+E[|A(kT/N)|2]
. g*(kT/N=mT—eT)+E[|A(KT/N)|?).  (®)

With noise power o2 and independently distributed symbols of
mean power 1, we have

Ela,a*)g(KT/N—nT—-¢€T)

s

— o0

E[x]= i |g(kKT/N—nT—€T)|*+ 02 ©)

n=-o
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Using the identity (A6) from Appendix A, we obtain for tl
expectation of X

LN-1
E[X]= Y Elx]e />N (
k=0
LN
27 Flle—eD)|* -1 (

with
Flx(0)] = r x(f)e-i df.

At this point, we introduce the following functions to simpli
the notation:

P-(t)=g(t)g*(t—nT) a
P,(N)=F[p.(D)]. a

We then have

LN
E[X] =T Flpo(t— €)=t

LN )
=— Py(1/T)e /¥ (1
T
and thus
E[&) ~! LNP(I/T j2
fl=—arg { — =2
27 g T° e
1
=e——arg Py(1/T). (
27

Therefore, under the assumption
arg Py(1/T)=0, (1

€ is an unbiased estimate of the clock phase e. But even if (1
is not valid, the mean of € exactly equals the required sampli
offset as we show below. We assume

gr(t)=g¥(—t+aT) (generalized matched filter). (!
We then have

gt)=go(t—aT) with go(t)=gr(t) * g5(-1) (I

F(t)=Y, a,go(t—nT—eT—aT)+A(0). C

Since gy(¢) is symmetrical, the optimal sampling instant is
go(t = 0), i.e., for the symbol a, at

lop.n=nT+eT+aT, ¢

i.e., the required sampling offset is (¢ + «)7. Evaluating (
then yields

Po(f)=e /TG [go(H)gF (D] ¢

Since go(#) is symmetrical, the Fourier transform in (21)
real.
Therefore, we have

arg Py(1/T)= - 27 ¢
and thus
Elé]l=¢+a C

which is exactly what is required for symbol detection.
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B. Variance

Here we determine the variance of the random variable €,
i.e., the mean square error of the estimation. We assume

e=0
arg Py(1/T)=0 (24)

to simplify the notation. (It can easily be shown that the results
are valid for arbitrary e and arg P,.) We then have

var [é] = E[é?]

= Gye £ Llare (O]
1 E[(Im X)?]

“@m? (ERe XD

The latter approximation is valid since the imaginary part of X

has zero mean and the variances of both imaginary and real

part are small compared to the squared real mean.
From (14) and (24) follows

(25)

LN
E [Re X]=E[X]=TP0(1/T). (26)
The variance of the imaginary part is
E [(Im X)?]
LN-1 . 2
e[ [goe]
k=0
LN-1 LN-1
= El[xyxi] sin Quk/N) sin Qek’/N)  (27)
k=0 k=0
with
o 2
Xk = E a,,g(kT/N—nT)+ﬁ(kT/N)‘ . (28)

By using some approximations which are valid for large L, the
expectation can be computed (Appendix B). If the results are
used in (25), we obtain

var [8)=0% +02 +0l 29)
with
3 (Im P, (1/T))?
ot = Llm (30a)
ST @mPL (Po(I/T))?
11 21
L. 30b
ST @mi L (Py(1/ T (300)
11 ;Re ®(1/T)
I 30
T GRE L0 (Bo(L/T))? (30c)
n={" 7 swereu-1)
- sin 27t/T) sin 2wt’/T) dt dt’ (31)
Y (N)=F[e2()] (32)
o= gadgi+n dr. (33)
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The three terms [302)-c)] represent the parts of the timing
jitter that are generated by (signal X signal), (signal X noise),
and (noise X noise) interaction.

C. Conditions for Asymptotically Jitter-Free Timing
Recovery

In this section, we study the conditions to be fulfilled by the
transmit and receive filters necessary for the timing estimate to

have zero variance in the noiseless case (N, = 0), i.e., the
conditions for the s X s-portion of the variance
11 2 (Im P, (1/T))?
ol = - = 34
5 @m)R L (Po(1/T))2 @4
to be zero.
We have
Pu(t)=g(1)g*(t—mT) (335)

Pm(f)ZG(f) * (G*(—f)e*jlvrfmT)

- rm G(f=—v)G*(— e~ /™ T gy (36)
and use of the abbreviation
H(f)=G/T-1)G*(-1) 37
yields
Pa(1/T)= Smm H(p)e /2T gy, (38)

For real valued g(¢), i.e., symmetrical joint transfer function
of the transmit and the receive filter, we have

G*(-f)=G() (39
H()=GU/T-H)G(). (40)
That means that H( f) is symmetrical around 1/27 and
1m Pp(1/T)= " 1m HG) cos @romT) dv.  (a1)
Therefore, a sufficient condition for zero jitter is
Im H(f)=0 (42)
which can be obtained, for example, with
g(®)=g(—1) (symmetrical pulse shape) 43)
and also of course with all linear-phase pulses
gr+)=g(r—1) (44

as they act like the corresponding symmetrical pulse g(¢ — 7)
with an additional timing delay ¢y = 7. The conditions (43)
and (44), however, show that the optimal receive filter in the
synchronization path is a matched filter

gr(D)=gr(=0. 45)

These results are valid, of course, only with the approxima-
tions made in Section III-B, in particular, only for large
estimation intervals L7. In the case of short intervals, the
estimate exhibits jitter, but the spectrum of the jitter has a zero
at the origin and can thus be suppressed by low-pass filtering.
True absence of jitter can be obtained in general only by using
nonoverlapping pulses.

This is in contrast to the conventional continuous-time filter
and square timing recovery. In the continuous-time case, the
timing is determined by detecting the zeros of the timing wave.
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Therefore, true jitter-free timing recovery is possible if the
timing wave exhibits only amplitude jitter, but no phase jitter.
The latter can be achieved, for example, with locally
symmetric pulses [7]. In our case, however, the estimation is
based on samples which have an arbitrary offset from the zeros
and thus exhibit random amplitude fluctuations. Therefore,
only asymptotically jitter-free recovery can be obtained.

D. Simulation Results

Fig. 2 shows the variance of the estimates € (29) for several
estimation intervals L where both transmit and receive filter
are fourth-order Butterworth filters with corner frequency 0.7/
T and the modulation format is 8PSK (solid lines). The
markers show the results of Monte Carlo simulations (5000
estimates for each point). In addition, for L = 64, the three
parts of (29) are shown by the dotted lines. The simulations are
very close to the theoretical results. Only for L < 4 are there
errors due to the approximations in the computation of the
variance which are valid for large L only. For L = 1 and E/
Ny = 0 dB the simulation result is smaller than the theoretical
result. This is due to the finite range of e. The variance tends to
1/12 when € is uniformly distributed in the estimation range.

Fig. 3 shows the corresponding curves for linear phase
filters with a transfer function amplitude similar to the above
Butterworth filter. For L = 16 and with moderate £/N, the
simulation results match the theory very well. In particular,
the predicted missing of an s X s-portion of the variance can
be seen. Because the absolute variances are much smaller than
in Fig. 2, the effects of the finite observation intervals LT are
much more visible here, especially for large E/N,.

E. Frequency Offset

Since we use a free running sampling oscillator, a frequency
offset between transmit and receive timing may be present
resulting in a continuously rising or falling €. In contrast to
carrier recovery, however, the frequency offset in timing
recovery is very small (107° - - - 1072 of the symbol rate). We
can therefore always find an observation length L = L’ for
which we can consider ¢ to be approximately constant. Then
all considerations of the previous sections apply. For L > L’
inspection of the estimation algorithm reveals that the estimate
X is nothing but the average over estimates from shorter
intervals. Therefore, also the mean of the estimate € is just the
average of the timing delay ¢ over the observation interval, as
long as the variation of e is smaller than 7/2. The latter
condition, of course, limits the possible observation length L.

Similarly, for small frequency offsets, the variance of the
estimates can be expected to be nearly independent of the
frequency offset. For larger frequency offsets, one would have
to examine whether the algorithm behaves like its continuous-
time counterpart that exhibits a significant increase in timing
jitter in the presence of frequency offset.

IV. PLANAR FILTERING OF THE ESTIMATES

Due to frequency offset and random variations of the delay
e, the observation length L is limited. The estimation,
however, can be significantly improved if the knowledge of
the statistical properties of e is used to postfilter the estimates.
For example, a simple ‘‘random walk’’ model for the time
delay e leads to a first-order Kalman filter. The variance of the
filtered estimates can be computed from the variance of the
unfiltered estimates and the random walk parameters [8].
Since the range of the estimates €, is finite, the filter
innovation must be reduced to the range [ — 0.5, 0.5] as shown
in Fig. 4.

With this kind of filtering, however, the following situation
can occur. If the true value ¢ is at a value 0.5 distant from the
filtered value €, the estimates € also vary around this value and
thus the innovation is at = 0.5 and vanishes in the mean. Then
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the filter is in an unstable equilibrium and it can remain ther
some time in spite of the large error.

This is a problem which arises also for other models an
filters and with almost all known synchronization methods
even if they—like the one presented above—could be calle
“‘open loop”’ at first sight. Because of the periodic behavior ¢
the filtered delay ‘‘hangups’’ can occur in the filter loop.

Below we present a realization which avoids these prot
lems. The central idea is to filter a complex phasor instead ¢
the corresponding (periodic) angle. The term X, from Fig.
is such a phasor. Instead of first determining the angle of thi
phasor and filtering the angle, we can apply a Kalman filter t
the phasor itself and use the angle of the filtered phasor t
control the sampling (Fig. 5).

In Figs. 6 and 7, a situation for filtering of ¢ and filtering c
X is shown. In the first case a hangup can occur if the error i
€ is approximately 0.5 (corresponding to an angle of ). Wit
planar filtering, however, the filtered value X moves correctl
(with a step width which depends on the filter coefficient
present) towards its place. Thus, hangup problems cannc
occur any more.
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Fig. 7. Fig. 6, but planar filtering.

The filtered estimate €, of Fig. 5 has of course the finite
range [~ 0.5, 0.5] again and with only small variation ir X,
jumps can occur between =+ 0.5 in €,,. The interpolation unit,
however, which is controlled by €, can easily discriminate
these ‘‘wrap-around’’ jumps from true variations of the time
delay and therefore determine the underlying infinite range
estimate and correctly compute the decision metric [4].

As a final remark, let us note that with the digital filter and
square timing estimation, the planar filtering is nothing but a
(weighted) summation of successive values X, ; and this is
merely an extension of the estimation interval LT in the
algorithm for computing X, (Fig. 1) with an additional
weighting of the terms.

V. REALIZATION OF THE DETECTOR

Fig. 8 shows a possible realization of the computation of X,
which allows high data rates through the use of parallel
processing and pipelining.

With a double set of latches, the quadruples of samples
belonging to an estimation interval of length L = 1 are
collected. Since the sin and cos functions take on only values 0
and + 1, no multiplications are necessary. The samples can
then be processed at the symbol rate 1/7 rather than at the 4/T
sampling rate. Squaring and addition can be divided by latches
into further pipeline stages. Thus, the fact that the estimation
algorithm needs 4 samples per symbol (instead of one or two
as other algorithms do) is relevant virtually only to the A/D
converter and therefore the estimator can be used even at high
data rates. We are currently incorporating the detector into a
CMOS standard cell chip which will run at about 10 Mbits/s.

In cases where a low number of samples per symbol is
important (e.g., when adaptive echo cancellers are used), the
actual sampling rate can be reduced to 2 samples per symbol
by using a simple all-pass filter to generate the missing
samples [2].
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Fig. 8. Fast digital realization of the detector.

VI. CONCLUSIONS

The proposed timing recovery enables a VLSI realization of
digital receivers which can operate on a sampled input signal
without any feedback to the sampling device. The latter can
operate at a fixed rate with a free running oscillator. The
planar filtering algorithm results in very fast and hangup-free
timing recovery.

APPENDIX A

Equivalence of discrete-time and continuous-time computa-
tion of the Fourier coefficients of periodic band-limited
functions. Assuming x(7) to be a 7 periodic and N/27T-band-
limited signal, we show that

ko+LN-1 IN o7
> x(KT/Nye =" yiye-ranit gy,
K=t T Yo

(A1)

To do so, we start with the integral form. Due to the low-pass
limitation, we can rewrite the signal by using sinc-interpola-
tion (sinc x = sin x/x)

.
[ xwe2r ar
0

T3 t—nT/N
=S E x(nT/N) sinc <7rnh e~ T gy
0 e /N
(A2)
kg+N-1 -
= Y xG*kT/N) ¥
k=ko m=—o
ST sinc ( f—mT-kT/N j2muT g
. M- KI7N o
0 T/N € 4 (A3)
ko+N-1
t—kT/
= E xX(kT/N)F {sinc <1r J)} (Ad)
k=ko T/N f=uT
kg+ ILN—-1
=— E X(kT/N)ei2mk/N, AS
LN ok (AS)
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In particular, with x(¢) = £*___ y(t — nT), we have EZ:E E E[anlarz]g(kT/N_ nmT)

kg+LN-1 ’ LN "1
Y XKT/Nye mrN=——Y(W/T).  (A6) - g*(kT/N—nyT)E[n(k’' T/N)n*(k’ T/N)]
k=kg oo
=Ny E Po(kT/N—iT)e(0) (Bl
APPENDIX B PR,

We first compute the expectation E3=E E E[ﬂnlan*z]g(kT/N— nT)

Elxixi0 ] o

[< E a,, 8g(kT/N—nT) +ﬁ(kT/N)> g*(k'T/N—n,TYE[n(k’ T/N)n*(kT/N)]

=Ny E g(kT/N—iT)g*(k'T/N—iT)

<E a4, g (KT/N— nT)+n(kT/N)> T
- o((k—k")T/N) (B1
<E 45,8 (k" T/N=nT)+ (k' T/N)) =E[n(kT/N)n*(kT/N)n(k'T/N)n*(k'T/N)]
=N%¢2(0)+Ng<p2((k—k’)T/N). (BL
The corresponding terms in (27) are now computed. TI
<E ny& (k' T/N=nT)+a(k"T/ N)> ] approximations are valid for large estimation intervals LT
IN-1 LN~1 oo
(B1) Su=3% ¥ X E po(kT/N—iT)
With k=0 k'=0 i=—o j=—o
Ela;fi(t)] =0 (B2) - polk’ T/N—jT) sin Qwk/N) sin 27k’ /N)
— LN 2
Ela]=0 (B3) — [_T__Im PO(I/T)] =0 (BI
E[a,-af]:a,j (B4)
LN-1 LN-1 o @
Elaa;]=0 (B5) Si= E E E E pi(kT/N—iT)
k=0 k'=0 i=-o0 j=—o
1 for i=j+k=1
ort=J ’H.‘_ - pi(k’ T/N—=iT) sin 2k/N) sin Qrk’/N)
1 for i=l#j=k j
E[aiaj’.“aka,*] = v for i_j'"k_[ (B6) o o o B X
ST = (kT/N)p;(k’
0 otherwise L k:E_m ky;(ﬂ;;@ pi( )pi(k’T/N)
Eln(n*(+ 0] =Nop()=No | ga(®)gh(t+7) dt - sin (2wk/N) sin 7k’ /N)
— 2 S R 2 .
(B7) =L(N/T) E (Im P;(1/T)) (B1
j=-o
10 of the 16 terms which result from (B1) vanish. The INZ1 LN-1
following terms remain: Si=(y—-2) E E Do(kT/N)po(k’ T/N)
Elxyxy 1=E,+2E,+2E;+E, (B8) k=0 k'=0
with - sin 2wk/N) sin Qwk’/N)
E=Y33Y Ela, a} a,af ] =~(y=2L Y, > Y pkT/N-iT)
nyp ny o n3ong - k=-—0 k'=—o =~
- g(kT/N—=n,T)g*(KT/N—n, T) - po(k' T/N—iT) sin 2wk/N) sin 27k’/N)
_ 2(n — 2_
- g(k’T/N=n;T)g*(k’ T/N—n,T) (B9) =L(N/T)*(y-2) (Im Py(1/T))*=0. (B1
Therefore,
= kT/N—i "T/N—jT E i
[;Zm j;w Po( iT)po(k JT) 11 S[’%’L(N/T)z E (Im Pj(l/T))Z (B1
j=-o
+ Y S pKT/N-iT)pik' T/N=iT)  E, 2
i o jm e IN-1LN-1 )
j $:=No 3 X 3 pokT/N-iT)¢(0)
k=0 k'=0 i=->

+(y=2) 3 Po(KT/N—iT)po(k'T/N—iT) Ei;
i=-w - sin @wk/N) sin RQrk’/N)=0 (B1
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LN-1 LN-1 o
$=Ng 3 S S gkT/N-iT)g* (k' T/N—iT)
k=0 k'=0 i=-o

- @((k—k')T/N) sin @rk/N) sin Qrk’/N)

~LN, i i g(kT/N)g*(k' T/N)

k=-o k'=-

- o((k=k’)T/N) sin 27k/N) sin Qxk’/N)
~LvryN |7 s

+ sin 27t/T) sin Qnt’/T) dt dt’
:= L(N/T)’NoI;

IN=1 LN-1
Ss=Nj > X (@O +e*(k—k')T/N))
k=0 k’=0

- sin @7k/N) sin Qzk’/N)
LN—-1 LN—1
=N ¥ S X (k-k")T/N)
k=0 k’'=0

- sin 27wk/N) sin Qnk’/N)

2LN=-2 x

=Ny 2 X nT/N)
m=0 n=-co
(m+n) even

+n m-—n
- sin <21r m /N) sin <27r /N)
2 2
2LN=-2 @

%'

X (nT/N)

1
: 3 (cos Rmm/N)—cos 2rn/N))
=N} i (LN/2)p*(nT/N) cos 2wn/N)

IN? e
=N j,m 02(t) cos 2xt/T) dt
L 2

= ZA; N2Re ¥(1/T)  with ¥(f)=F[02(1)].

(B19)

Finally, we can write

El(Im X)] =58, +28;+S,.

The three terms represent the parts that are generated by
(signal X signal), (signal X noise), and (noise X noise).

Correspondingly, the variance of € is

22 2 2
var [e]=02 +0l  +oi

(B18)

(B20)

(B21)

with
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. L (;)2 ? (Im P, (1/T))?

2

T 2y IN 2
(7130(1/7))
|2 (m P,/
el (PRO/T)? (B22)
N\ 2
| <7_> Nols
g =
e (27r)2(LN )z
—— (Py(1/T)
R 21,
en’L No Po(1/T))? (B23)
(N)ZLTNZIR (/T
, 1 A\T 05 Re¥(/T)
™ (2w LN >
(7130(1/7))
T Re ¥(1/T)
— K€
L 12 (B24)
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