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Effect of Noisy Phase Reference on Coherent Detection of Band-limited
Offset-QPSK Signals

FENG FAN anp LOH-MING LI

Abstract—In this paper, the performance of band-limited offset qua-
ternary phase shift keying (offset-QPSK, OQPSK) systems in the pres-
ence of noisy phase reference and additive Gaussian noise is analyzed.
Expressions for error probability calculation are obtained. A new search
method is proposed for computing the detection loss and the required
SNR of the phase reference. It is shown that when the rolloff factor
for the Nyquist filtering is large, OQPSK surpasses QPSK, but when
the rolloff factor is small, QPSK surpasses OQPSK.

I. INTRODUCTION

The purpose of this paper is to investigate the effect of noisy phase
reference on the performance of band-limited offset quaternary phase
shift keying (offset-QPSK or OQPSK) data transmission systems. In
conventional quaternary phase shift keying (QPSK) modulation, the
two binary data streams are time coincident, whereas the bit align-
ments are staggered for OQPSK modulation. Rhodes [1] has shown
that OQPSK requires less signal-to-noise ratio of phase reference than
QPSK for the same error probability performance, but his analysis
is only for “‘infinite” bandwidth systems. Gitlin and Ho [2] analyze
the performance of band-limited OQPSK systems in the presence of
phase jitter, but the criterion used is the mean square error. Using
this criterion, they conclude that OQPSK surpasses QPSK for any
rolloff factor for the Nyquist filtering. Palmer et al. [3] discuss the
problem of synchronization for band-limited QPSK and OQPSK, but
only computer simulation results are given. In this paper, we analyze
the error probability performance of band-limited OQPSK systems
in the presence of noisy phase reference. It is shown that for large
rolloff factor, OQPSK surpasses QPSK, but for small rolloff factor,
the reverse is true.

In Section II, the system model is described and expressions for
error probability calculation are obtained. In Section III, methods of
computation are discussed and various performance curves are given.
Section IV is for the conclusions.

II. ANnaLysis

The QPSK system we analyzed is shown in Fig. 1. The chan-
nel and all filters are assumed to be linear and time invariant. For
OQPSK, a (7/2)-delayer should be added between the receive fil-
ter and the sampler in the in-phase channel in order to recover the
bit alignments where 1/T is the symbol rate. For both QPSK and
OQPSK modulation, the input of the transmit filter can be written as

W) = Z ay rec[(t —kT)/T] cos w.t

k=—00

+ 3" byrect[(t —IT ~ DT)/T] sinwet (1)
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Fig. 1. QPSK receiver for band-limited system.

where D = 1/2 for OQPSK, D = 0 for QPSK, rect(x) = 1 for
|x| < 1/2, rect(x) = 0, otherwise. w. = 2xf., f. is the carrier
frequency. a; and b, are assumed to be independent binary random
variables which take the values 1 or —1 with equal probability. The
received signal y(¢) at the output of the receive filter in the in-phase
channel can be written as

() = {IW(0) xhr (£) xhe(8) + n(D)] cos (wct + )} +hp(t) (2)

where A7 (1), hc (), and hg(¢) are the impulse responses of the trans-
mit filter Hr(w), the channel H(w) and the receive filter Hz(w),
respectively. ¢ is the phase error relative to the modulator refer-
ence phase. n(¢) is the Gaussian noise with autocorrelation given by
R(7) = (No/2)8(7) where 8( -) is the Dirac delta-function.

The transmit and receive filter are designed such that the overall
frequency characteristic H(w) has the well-known form of the raised-
cosine Nyquist filtering.

T,
loT| < (1 —8)
T - cos! {(JoT| — (1 — B)]1/(48),
H(w) = 3
(1 —B) < |oT| < w(1+8)
0,
[T >w(1+8)

where 0 <8 <1 is the rolloff factor for the Nyquist filtering,
H(w) = RECT (w)H rcL(w)H p(w), RECT (w) is the Fourier trans-
form of rect (¢ /T) and Hrcy(w) is the equivalent low-pass frequency
characteristic of Hr(w) - He(w). Hypothetically, Hg(w) is directly
proportional to the square root of H(w). The impulse resposne A(?)
which is the Fourier transform of H(w) is shown in Fig. 2. We as-
sume that the symbol synchronization is perfect. y(¢) is sampled at
t = nT where decisions are made by detecting a “1” if y(nT) lies
in the range 0 < y(nT) < oo and a “—1” if — oo < y(nT) < 0.
The error probability in the in-phase channel conditioned on phase
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Normalized time ( t/ T )
Fig. 2. Raised-cosine pulse responses for various values of 8.

reference error ¢ can be shown as

_1 [2E) e
P(p) = 2 {Q [ No (cos ¢ —sin <p):|
@(COS ¥ + sin <p):| } , for QPSK, (4a)
V No

P(W):<Q{'/2N£; [coswsianb,h

I=—o00

(_IT _ Z)} }> for OQPSK  (4b)
2 bbby,

where E; /Ny is the received ratio of signal energy per bit-to-noise
power density, ( - ). denotes the average over Z, Q(x) is the Gaussian
integral

+Q

Ox) = \/%_T/x exp(~U?/2)dU.

The error probability in the quadrature channel can easily be shown
to be identical to that in (4). Therefore, (4) is the expression for the
bit error probability conditioned on phase reference error ®.

In (4a), P(p) does not depend on b, (I+#0, I =
-0, =2, =1, 1,2, ) in the detection of gy for reason as follows.
With the assumption of Nyquist filtering and perfect symbol syn-
chronization, there is no intersymbol interference (ISI) for QPSK at
the detection sampling instants. When ¢ # 0, the only interference
in the detection of aq is from by and this leads the — sin ¢ and
+sin ¢ terms in (4a). Then, the error performance of QPSK is not
influenced by the bandwidth limitation of Nyquist filtering and is
therefore independent of the folloff factor 3. From (4a) we also see
that the error probability of band-limited QPSK is identical to that
of infinite bandwidth QPSK analyzed in [1].

For OQPSK, because of the timing offset of T/2 for the binary
components, the correct sampling points for bit decisions on one
binary component does not occur at ISI nulls for pulses of the other
binary component. Therefore, in (4b), P() dependson b; (I = - - -,
-2, -1,0, 1, 2,--.). The magnitude of A(/T —T /2) increases as the
rolloff factor 3 is decreased, so the detection performance of OQPSK
is better as 3 is larger which will be shown in Fig. 3. When 8 =1,
from Fig. 2 it can be seen that h(—/T —T /2) = O except for/ = —1,0
and h( £7 /2) = 1/2. The detection of @, is only influenced by b_,
and by . If the polarity of b _, is opposite to that of by, the interference
of b_; is cancelled by the interference of b, and hence the detection
performance is identical to that for BPSK. If b_,, b, have the same
polarity, the interference is [#(T /2) + h(~T /2)] sin ¢ = sin ¢ or
—sin ¢ and the detection performance is identical to that for QPSK.
Thus, when 8 = 1, (4b) can be simplified as

1 1
P(p) = EQ[\/2E1>/N0 cos ¢] + ZQ[\/2E1,/N0(cos @ —sin )]

+ %Q[,/zEb/No(cos @ +sin )], for OQPSK, 8 = 1
(40)
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Fig. 3.

which is identical to that for infinite bandwidth OQPSK analyzed in
[1].

The error probability of OQPSK given by (4b) is too time-
consuming to compute. This problem can be solved by Gram-Carlier
series expansion method [4]. According to [4], the error probability
of OQPSK can be written as follows:

P() = Q(y/2E, [No 05 ) — (1/V2) exp[~(Ey /No) cos® ¢]
oo M
i [Z(ZEb/No)k ~Ha—1(1/2E} [Ny cos ) (21:;! (3

k=1

where H; _;(x) is the Hermite polynomial, M, is the 2kth moment
of the random variable [sin ¢ Z,o:_ ooDBUT —T [2)]. My can be
computed according to a recurrence relation [4] given by

k

2k —1 ) )
My = Z [21’ 1 } (=)' Mg fE0(0) (6a)

=1

44 -1

@i~1) gy =
SR = —;

B, Isin ¢ -h(T —T/2)f" (6b)

l=—0o0

where B; is Bernoulli number, M, = 1.

In the consumption of error probability, the carrier tracking phase
error is treated as a constant over each symbol interval, which is
virtually true for synchronizer bandwidths that do not exceed one
tenth of the digital signaling rate. The average probability of error
is then found by integrating (4a), (4c), or (5) over the probability
density function (pdf) f¢(¢) of the random phase error .

P=f P(p)fa(p)dy )

III. CompuTATION

In the computation of error probability, we assume that the pdf of
the phase tracking error is [1].

exp (« - cos @)

Se(p) = 2xlo(a) ’

- << (8)
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Fig. 4. Detection loss in band-limited systems as a function of SNR of phase
reference. (a) Evaluated at Py = 1072, (b) Evaluated at Py = 107%. (¢)

Evaluated at Py = 1075,

where o is the SNR or the phase reference, which is approximately
equal to the inverse of the variance of ®. [ refers to a zero-order
modified Bessel function of the first kind.

Fig. 3 shows the calculated error probability P versus E}, /N, and
parametric in the rolloff factor 3, when the SNR of phase reference
is 19 dB (A4 = 10 log (o) = 19 dB). The result for BPSK is also
shown for comparison. The performance of Nyquist filtered BPSK is
independent of 3 and identical to that of infinite bandwidth BPSK for
the similar reason described in Section II for QPSK. So it is seen that
for BPSK and QPSK, P does not vary with 3. For OQPSK, the larger
the rolloff factor is, the better is the detection performance. For large
rolloff factor, OQPSK surpasses QPSK, but for small rolloff factor,
the reverse is true. In the calculation, we use 10 terms in (5) and
41 terms in (6b) which are found to be appropriate and discussed in
[5]. A recurrence relation of My /k! is actually adopted instead of
M given by (6a) to limit the calculated numbers not too large to
overflow from the computer (VAX-11/780) capacity.

The loss in detection efficiency that is associated with a noisy phase
reference is defined as the required increase in E, /N, relative to
ideal coherent detection for maintaining a given error probability Py.
For band-limited BPSK and QPSK, the loss in detection efficiency
can be expressed by a function such as L = F(8, Py) like those
for infinite bandwidth BPSK and QPSK given in [1]. Unfortunately,
the function F cannot be written explicitly for band-limited OQPSK
because of the complexity of (5). We use a kind of ‘‘searching”
method to calculate the loss in detection efficiency L as follows.
Suppose that a function G(A) is defined as

G(A) =MAX(Py/P, P [Py) ©

where Py = Po(E, /No), P =P{[(E»/No) + A],B, a}. G can be
viewed as a function of A when the values of E, /N, 8 and « are
fixed. The minimum of G is 1.0 and the value of A which enables
G equal 1.0 is L, the loss in detection efficiency. G increases mono-

tonically if A deviates from L, i.e., G(A) is a unimodal function of
the continuous variable A defined on a closed interval, for instance,
[0, 6 dB}. A computer program is designed based upon a method
of optimization, Golden Section search [6], for searching the value
of A which enables G approximately equal to 1.0. We denote this
A be L. The value of G(L) is an indication of the accuracy of the
search. Detection losses for band-limited BPSK and QPSK systems
are also calculated by this searching program for comparison. Fig.
4 shows the detection losses versus SNR of the phase reference. The
maximum among the values of G(L) equals 1.00037, which indicate
the high accuracy of the search.

In (9), G can also be viewed as a function of & when the values
of E,/No, B and A are fixed, i.e., G(a) = MAX(Po /P, P/Py).
The value of & which enables G = 1.0 is the required value of SNR
of phase reference at a certain fixed loss A = L in detection. Fig.
5 shows the required SNR of the phase reference versus the error
probability when the detection loss is specified.

IV. ConcLusIoNs

Imperfect carrier synchronization causes a performance loss for
coherent band-limited PSK system. The bit error probability can be
calculated by (7) and (4a) for QPSK systems and by (7) and (5) or
(4c) for OQPSK systems. For band-limited BPSK or QPSK signal-
ing, the performance loss is independent of the rolloff factor and is
identical to that for infinite bandwidth BPSK or QPSK. However, for
bandlimited OQPSK signaling, the performance loss increases as the
rolloff factor 3 is decreased. When 3 equals 1, the performance loss
for band-limited OQPSK is identical to that for infinite bandwidth
OQPSK.

It is shown that when 3 is large, OQPSK surpasses QPSK and
when $ is small, QPSK surpasses OQPSK. The turning value of 8
for which the performance of OQPSK equals that of QPSK depends
on the specified error probability and the SNR of the phase reference.
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