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Abstract—Carrier-phase synchronization can be approached in a
general manner by estimating the multiplicative distortion (MD) to which
a baseband received signal in an RF or coherent optical transmission
system is subjected. This paper presents a unified modeling and
estimation of the MD in finite-alphabet digital communication systems. A
simple form of MD is the carrier phase exp (j6) which has to be estimated
and compensated for in a coherent receiver. A more general case with
fading must, however, allow for amplitude as well as phase variations of
the MD.

We assume a state-variable model for the MD and generally obtain a
nonlinear estimation problem with additional randomly-varying system
parameters such as received signal power, frequency offset, and Doppler
spread. An extended Kalman filter is then applied as a near-optimal
solution to the adaptive MD and channel parameter estimation problem.
Examples are given to show the use and some advantages of this scheme.

I. INTRODUCTION

HE power efficiency provided by coherent detection in

digital communication systems is only possible when the
receiver is supplemented by a carrier phase synchronization,
or said generally, a multiplicative distortion (MD) estimation
unit. Such a unit, which may or may not have access to
modulation-free sections of the carrier, can optimally estimate
the MD from the received signal by modeling the dynamics
generating the MD. These models have in general additional
unknown or randomly varying parameters and a good estimate
of them might be essential for successful synchronization. For
example, in a UHF mobile communication system the MD
estimation is mostly concerned with signals which strongly
depend on parameters such as the vehicle speed and received
signal power (Section IV).

The problems of identification, state estimation with track-
ing, and adaptive control of systems with unknown parameters
have been studied mainly in the fields of control and aerospace
for over 20 years ([1]-[4], for example). In the area of signal
processing similar ideas are known as ‘‘adaptive algorithms’’
whereas in statistics the methods are usually called ‘sequential
parameter estimation.”” A coherent picture and analysis of
recursive identification composed of the many approaches
used in each of these disciplines is presented in [S].

The major contribution of this paper is a formulation of the
extended Kalman filter [6] which can be applied in a unifying
manner to many MD estimation problems in digital communi-
cation systems with additional unknown or randomly varying
parameters. This opens the way for novel MD estimation
schemes and the improvement of some current carrier syn-
chronization techniques. Similar nonlinear estimation methods
[10]-[14] which are extensions of [7]-[9] are suggested in the
context of quasioptimum angle demodulation. All these
methods are in principle related to the example considered in
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Section IV-A. The demodulation structure for fading channels
[15] seems to have similarities to our example, Section IV-B.
However, a main difference is that we face an easy-to-
eliminate digital message and concentrate on the synchroniza-
tion problem while the above work has to jointly estimate the
fading distortion and the analog FM message.

A popular approach for carrier recovery [16] is the
maximum likelihood (ML) method where an appropriate
likelihood function of the carrier phase taken as unknown and
essentially constant over an observation interval is maximized
and no assumption about the a priori probability densities
(except for the additive noise) is made. For a simple additive
white gaussian noise (AWGN) channel, other approaches
(e.g., Bayesian) which use some a priori knowledge about the
carrier phase distribution yield similar results because the
module-27 nature of phase effectively produces a uniform
distribution. This can, for example, be seen in Fig. 4 where
the phase of y, has nearly a uniform distribution over any
interval of 2x even though the phase 6y is actually gaussian.
However, in the case where the MD is a two-dimensional
(complex, baseband) signal as in Fig. 6, we are not working
with periodic quantities. Then, by relying on certain a priori
statistical information on both the MD and the additive noise
we can aim to deliver an optimum, in the sense of minimum
mean-square error (MMSE), estimate of the MD recursively.
Such statistical information can be provided in many cases of
interest (e.g., Section IV-B) and results in improvements over
the ML method.! Other disadvantages of the ML method are
that an extensive search may be required to find the optimal
estimate when the density function has several peaks and that
the favorable properties, the unbiasedness and consistency of
the estimates, do not necessarily hold if the unknown quantity
is actually time varying.

Section II defines a general model used to represent digital
communications in baseband. The resulting complex-valued,
noisy received signal and its random parameters are the
subjects of a joint estimation algorithm in Section III using an
extended Kalman filter. Section IV presents the examples of
MD estimation for AWGN channels, mobile communication
systems, and receivers with randomly varying frequency
offset and received signal power.

II. SIGNAL MODEL

Consider the complex-valued baseband linearly modulated
received signal of the form r(¢) = =, uy y(¢t) h(t — kT) +
v/(t) generated by using a fixed local carrier. Here, uy
represents the finite-alphabet digital modulation with E[|u|?]
= 1, y(¢) the MD with E[|»(¢)|?] = 1, h.(t) the convolution
of the signaling pulse and the channel impulse-response, and
».(t) the AWGN with one-sided power spectral density (PSD)
of Ny. The goal of a general baseband *‘carrier synchronizer>’
is to provide a good estimate of the MD y(#) which may

"It can be proved that on a channel with memory the detection process
is optimized under the minimization of probability-of-error criterion by
employing a MMSE estimator.
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Fig. 1. Baseband discrete-time model of a digital communications system.
(Perfect symbol timing and absence of intersymbol interference assumed.)

include phase/frequency errors of the mixers, time-varying
amplitude and phase introduced by a frequency-flat fading
channel, etc. For the synchronizer, however, the modulation
u; plays the role of an MD and has to be somehow eliminated.

We pass r(¢) through a matched filter with impulse response
h*(—t)/E and assume that the combination of A.(¢) and the
matched filter forms a Nyquist pulse for intersymbol-interfer-
ence-free reception [17], i.e., | A*(— AT — 7Ddr =
Ebd(k) where E is the received energy per channel symbol.
Then sampling the result at the channel symbol rate 1/ T with
correct symbol timing and assuming that y(¢) changes little
over a time period equal to the duration of A.(¢) yields the
sufficient statistic representation z, = u,y, + Vi where v, can
be shown to be a discrete-time AWGN with average power
Ny/E, yi := y(kT) and ET|u;y¢|*] = 1. For the rest of the
paper, we refer to z, as the received signal.?

The discrete-time model shown in Fig. 1 can describe a
large class of structures in digital communications represented
in baseband. For the sake of synchronization, this model
emphasizes the MD in opposed to the modulation. Using real-
vector notation hereafter, the input zero mean white Gaussian
noise (WGN) vector 7, has an arbitrary dimension whereas yy,
v, and z; are two-dimensional vectors formed from the
cartesian coordinates (in/quadrature-phase (I/Q) components)
of the corresponding complex-valued baseband signals. The I/
Q components of the data symbol u, form the following 2 x 2
matrix or 2 X 1 vector:

I I

o e S I
k ll(Z .lll ’ k ll(? .

k k k

The MD y, with the generalized role of the “‘carrier phase’’ is
generated by a nonlinear dynamical system. This system has
the explicit state variable s, and an implicit dependence on the
parameter vector p; which itself has a nonlinear state-variable
description and is assumed to be varying more slowly than the
state sx. In the next section s; and p; will be put together in a
joint state vector.
The received signal, written as

Zk=Upyr+u, 1

must be manipulated for the sake of the detection of the
transmitted data symbol stream (see Fig. 2). Specifically, an
estimate Pyx_1 of Yy, given 2o - -+ Zx., and (estimates of) u,
*** Ug_), 15 used to eliminate the effect of the MD y; and
leaves us with &, + noise which is the decision variable
yielding the tentative detected symbol . This result is now
used in (1) to build the signal y, + noise which can be
processed to give the new prediction $¢, x of the MD. The
recursion then goes on. :

Assuming that the receiver is working in a region of
reasonable error rate the process of eliminating the data
modulation by using the detected symbols in (1) is quite
satisfactory. This implies a decision-aided synchronization
scheme but there are other alternatives like the introduction of
a suitable nonlinearity for eliminating the data modulation
effects. In any case, the tentative symbol elimination needed

2 For unknown channels, a fractionally spaced untrained [18] or a trained
cyclic [19] equalizer could be thought to precede the symbol-rate sampler.
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here is for the sake of MD estimation and does not necessarily
coincide with the actual detection process of the receiver
which may have a long decoding/detection delay when coding
is used. So, we can simplify the arguments for the estimation
of the MD by equivalently assuming continuous wave (CW)
transmission, i.e.,

Z=Yyx+v, (for Uy=1,, the 2X 2 identity matrix). (2)

The receiver of this CW transmission must now concentrate
on estimating y, along with the parameter p;,. However, one
must be aware that parameter estimation is only possible if the
model structure is selected properly, resulting in an “‘identifi-
able’” parameterization. This is described roughly in [20]
(with further references for more specific results named there)
as a set of conditions on the system modes affected by a
parameter. The conditions, rephrased to suit our model in Fig.
1, are that at least one of these modes be 1) observable, 2)
excited by the initial conditions or controllable from the
inputs, and 3) such that a,(-, s), bi(+, $), and c;(-, s) do not
assume identical values for different parameter values. The
third condition can apparently be relaxed for periodic func-
tions of a parameter, the identification of which is acceptable
over any period. This will be the case in Section IV-C.

Besides the identifiability of parameters, it can be important
from a computational viewpoint to perform a sensitivity
analysis [20], [21] for distinguishing the parameters that are
crucial to estimate, rather than estimating all uncertain ones.

III. JOINT ESTIMATION: THE EXTENDED KALMAN FILTER

Looking at Fig. 1 and omitting U, the structure exactly fits
the signal model for which an extended Kalman filter is a
‘‘near optimum’’ estimator [6]. The governing equations are

Sir1=ax(Dic» i) + bi( Py, SNy 3
Yie= (D, sk) @
%=Yr+ v (5)
Per1=di(pi) + &k ©®

where @, ¢, and d; are in general vector-valued, differentia-
ble, nonlinear functions and b; is a matrix-valued linear
function. These equations are quite general and would be
tailored to suit specific cases of interest. For example, di(pi)
= pi in the case of an unknown, constant parameter vector.
Or, by is usually independent of p and s.

The dependence of the system model on the parameter
vector p; is handled by augmenting the state vector with the
vector p;, namely, by defining a new state vector

| Sk
Xy 1= [pk] . )

Then we have the general model

{xk+l = Ji(Xe) + & (xi) wy ®
e =h(a)+u ®
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with
Feln= [""},f’(’;k‘)"’] (10)
8e(x0)= [”""’5’ % ‘}] an
he(xe) = ci(Prs SK) =Yk 12)
Wi = [2’:] : a3

We further assume that {v,} and {w;} are zero mean, white
Gaussian processes and X, is a Gaussian random variable, all
being mutually independent with

Elvvi1=R (14)
E[wewI1=0; 15)
E[xo]=%o; E[(xo—Xo)}(Xo—%0)T]1=Py. (16)

Now, we introduce the matrices

F _%(x) _ [6ak/as aa,,/ap] an
, ax x=%k|k 0 ddy/dp x=%k|k
Ak (x)
T_ =[0cx/0s dcr/dp] s 18)
Kax |x=gee—r fock /0P Le=e-r

bi(Brjx» ki) O
0 1] (19)

Gi=gk(Rx1x) = [

and follow the work in [6] to derive an approximate linear
signal - model and the corresponding Kalman filter. The
functions fi(-) and Ai(-), if sufficiently smooth, can be
expanded in Taylor series about the conditional means Xy, and
Lik—1, respectively. Neglecting the second and higher order
terms enables us to approximate (8)-(9) by the linear model

Xee1= FiXy + GeWe+qi x (20)
2k =H[xk+ Vit Gk, ; (21)
with known, external insertions
i, x=JSe(Bu 1) — FaXey e 22)
Qk,e= MRy k—1) — H T £iy-1 .« (23)

Note that the linearization of f; and A, is performed at each
time step. The Kalman filter for this approximate linear signal
model is defined to be the extended Kalman filter for the
model (8)-(9) and is shown in Fig. 3.

The Kalman gain L, is computed online using (10)-(19)
and the relations

T 1= Bl 50— 50)" =Po} lnialization (30
Qc=HT Sk 1He+ Ry (26)

Ly=ZyxH Q! 27
2k|k=(1_LkHZ)2k|k—l(I_LkH{)T+LkRkLZ. 29)
Skak=FiZu )i FT+ G Qi GT. (30)

While being an exact Kalman filter for the signal mode
(20)-(21), this extended Kalman filter is no longer linear or
optimal when applied to the general model (8)-(9). The
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smaller the errors ||Ix; — Lkl and ||xx — Kas—1 ||, the less is
lost by neglecting the higher order terms in Taylor series
expansion of f;(+) and /(). Some indications of the extended
Kalman filter quality are how small the trace(Zy;) and
trace(Zyk-1) and how white the pseudoinnovations are.

There are other algorithms [6] for gain and covariance
recursions which are algebraically equivalent to (26)-(30) but
have some improved properties such as better computational
aspects or more efficiency. Most of these alternatives like
square root or information square root Kalman filtering can be
used with little extra effort in the extended version too.

We see that in (26)-(30) the computation of L and ¥ are
coupled to £ through (17)-(19) and hence cannot be carried out
offline. But for some applications it might be possible to find
approximations which result in decoupling of these computa-
tions.

It is possible to improve the estimation accuracy by iteration
techniques which improve the reference trajectory or by
including more terms in the Taylor series expansion of f and
A [22]. On the other hand, one can use other expansion
methods like the “‘statistical approximation’’ technique [23]
which does not require the differentiability of system nonlin-
earities and has potential performance advantages.

Unfortunately, no general performance or stability results
are known for the extended Kalman filter. The algorithm may
give biased estimates and may sometimes diverge. But there is
room for improvements through modifications which are, for
example, explained in [23]-[25]. In specific cases, when the
nonlinearities f; and A, are cone bounded, similar estimators
can be obtained by taking the structure of Fig. 3 but using
some other procedure for the gain calculation which is
decoupled from the state estimate and yields a filter with
obtainable performance bound. Moreover, attempting to
minimize the bound on the error covariance (instead of the
error covariance itself) a ‘‘bound optimal’’ filter with pre-
computable bound and gain can be found [6].

The MD estimation unit of Fig. 3, besides being nearly
optimal, has the general advantage that no VCO or NCO is
involved in this unit and that its structure well suits into signal
processor and VLSI realizations. Additionally, some specific
advantages are pointed out as we go through the examples in
the next section.

IV. APPLICATIONS

Any MD estimation problem which can be formulated by
some choice of the functions ay, by, ¢, and d; of Fig. 1 has the
(near) optimum solution offered in Section ITI. We present a
few examples by first finding a phase synchronizer for AWGN
channels which is possibly only of academic significance.
Then, we proceed to other channel models where actual
practical implications are at stake.

A. Carrier Phase Estimation on AWGN Channels

The sampled baseband received signal in a digital communi-
cation receiver on a pure AWGN channel is

Z=U; I:COS ok] + vg.

sin 6,

€2V

A coherent receiver must somehow estimate the carrier phase
0, and eliminate its effect before attempting to detect the data
symbol u;. Here we approach phase synchronization (in the
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Fig. 4. Model for the carrier phase process on AWGN channels.

context of the structure of Fig. 1) by the assumption that the
phase process is generated using the system of Fig. 4.
Using the notation of the previous section we have

Sk+1= k(D> Sk) + bi(Dic, s)n=A(pi)si+ B(pe)ni (32)

CT(py)s
Yie=Ck(Pr> SK)= [Zﬁ? [[CT((zf))s:]]] (33)
where the carrier phase is recognized as
CT(pr)sy =: . (34)

The matrices A(-), B(-), and C7(-) are set by the low-pass
filter (LPF) which determines the PSD of the carrier phase
process 6. Similar models to that of Fig. 4 have been used
[13] in the context of near-optimum demodulation of analog
FM with 6, representing the message process. In our case
here, the carrier phase process 0, is mostly the result of the
flicker noise of the oscillators used in the mixers and its PSD
has components of the form |w|* for o some nonpositive
number [26]. For example,

0
Se(w) = E Aol O<w<|w|sws<o

a=-~4

(35

where the coefficients ki, depend on the oscillator type and w;
and wy, represent limitations on the measurements of PSD. For
practical reasons, in this example weleth_; = h_, = hy = 0.
The two remaining terms correspond to random phase and
frequency walk which can represent most oscillator inaccura-
cies and instabilities of interest.> Now assuming white inputs
with unity average power the LPF with two inputs and one
output has the transfer function matrix

F(s)=[Vh_4/s* Nh_s/s] (36)
with the unknown, constant parameter vector
p=IVh_4Vh_ 5T k7))

A discrete-time filter F,;(z) can be found from F(s) by using
the impulse-invariant transformation [27]. Then the relation
Fy(z) = CT(zI — A)™'B poses a realization problem for
determining the matrices 4, B, and C. Finally, using &, = 0
and di(p) = p in (6) the extended Kalman filter of Fig. 3
performs the carrier phase synchronization by delivering the
estimate Pyx—1 = [cosBu—, sinBie—1]7. Additionally, Pry_
gives information about the unknown 4, coefficients in the
model.

It is interesting to study the similarities of the above
extended Kalman filter and the phase locked loop (PLL).* In
the extremely simplified case with known parameter p = [0
117, i.e., for Fy(z) = [0 1/(z — 1)}, and with no AWGN the
extended Kalman filter, after using some algebra, turns into a
first-order PLL (in baseband) transformed to discrete time
(Fig. 5). The box 1/(z — 1) in the estimator plays the role of a
voltage controlled oscillator (VCO) with transfer function 1/s.
Furthermore, using p = [1 1}7, i.e., a LPF with transfer

3 In coherent optical communications, the noise process is mainly deter-
mined through nonzero Ao, % _,, and A _, terms which represent the shot noise,
the laser phase noise, and the frequency mismatch, respectively.

4 Such a comparison has been made by many authors for the case of near-

optimum angle demodulation, too.
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PLL” in baseband) as the estimator.

function matrix Fy(z) = [1/(z — 1)? 1/(z — 1)], results in an
extended Kalman filter which after reaching steady state has
the same form as a second-order PLL, the most popular one in
application. In both of these cases, including the AWGN v, =

(! v@)7 in the signal model results inaterm v’ (k, 8) : = — v}
sind + vg cosd to be added to the output of the sin () of the
estimator. A PLL with noisy input experiences an identical
modification of its noiseless-input baseband equivalent model.

In a realistic problem, we might have significant amounts of
additive noise in addition to oscillator instability and inaccu-
racy. Then, optimization of the tracking performance for a
PLL requires quite laborious arguments for finding loop
parameters which minimize the variance of the phase error 6
— 6. These arguments are based on assuming a set of values
for the A, coefficients of (35) and a fixed known signal-to-
noise ratio (SNR) and have to be repeated if the SNR or the A,
coefficients change. On the other hand, approaching the same
problem with an extended Kalman filter, the Kalman gain L,
which effectively contains all the loop parameters is easily set
in the ‘‘best possible’’ manner automatically and adaptively.
(For SNR adaptation, see Section IV-D below.) In any case,
the synchronizers of the form in Fig. 5 are optimum during the
tracking mode, as the sin(-) nonlinearity can be ignored for
small phase errors.

Rapid acquisition of phase is also essential in many
applications. In general, any synchronizer resulting from the
model of Fig. 4 (i.e., some form of a PLL) is not reliable for
fast acquisition of phase or frequency by itself. For example,
in Fig. 5, a situation with an initial estimation error § — ==
might be left uncorrected for a long time (‘‘Hangup’’, [28].) A
possible solution to this problem is known as ‘‘acquisition-
aided PLL’’ [16, paper by H. Meyr and L. Popken]. Utilizing
the ideas in this paper, a more systematic solution is being
currently investigated. The idea is to stay away from phase and
frequency as explicit state variables in an attempt to avoid the
acquisition problems of the PLL.

B. Independent-1/Q Models: Adaptive MD Estimation for
Mobile Communications

Starting with a PLL to achieve phase-coherent detection of
digital data or voice transmitted over many fading channels
results in receivers with unacceptable behavior. This is a direct
reflection of the poor response of the PLL during and
immediately after deep fades in channel amplitude, generally
leading to the conclusions that coherent detection is not
suitable for such fading channels and noncoherent detection
must be resorted to, [29]. Here we apply our method of near
optimum MD estimation which does not have the weaknesses
of the PLL and results in a coherent receiver that outperforms
the noncoherent one.

We modify the last example by assuming that the two
components of y, are generated independently (Fig. 6). This
allows amplitude as well as phase variations of the MD y, and
results in the Rayleigh flat fading observed in many mobile
communication systems.* Working on the quadrature compo-
nents of y; (and not its phase directly) has interesting
properties which will be explained at the end of this example.

5 The signal model for Rice fading includes both Figs. 4 and 6 with their
output vectors summed together after being properly scaled.
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The received signal is

2= Uit . (38)

In comparison to (31) the estimation of the MD y, can be
interpreted as the ‘‘carrier estimation’’ in the receiver. Again,
we ignore U; and concentrate on the estimation of y; by using
specific information about the dynamics of the LPF’s in Fig.
6.

In mobile communications, under the assumption of uni-
form angular distribution of the received electrical waves,.a
transmitted CW signal at frequency f. has the following
baseband I- or Q-component PSD at the receiver [30]

Syue(N)=0-f/fp)) "% |fl<fo (39)
with
JSo=fv/c  (half of the‘Doppler spread)
v=vehicle speed
c=speed of light. (40)

For a carrier frequency of 1 GHz and maximum vehicle speed
of 260 kim/h (e.g., for trains in Europe), the Doppler spread
[17] runs up to about 500 Hz which is a considerable amount.

Assuming a white input, the magnitude of the frequency
response of a LPF with output PSD of (39) is

|FONI=A-U7fp)) % |fI<fo @n

which is plotted in Fig. 7. Having a fixed carrier frequency f,
in (40), the filter cutoff frequency fp depends on the vehicle
speed and is an unknown, time-varying parameter.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 11, NOVEMBER 1989
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Fig. 7. Magnitude of the frequency response of the LPF’s of Fig. 6 for land-
mobile communications. fp depends on vehicle speed and is unknown.

o-[1 Y],

It is observed in practice that such random-parameter models
yield good filter designs even if the parameters actually have
deterministic behavior.

An LPF with very similar characteristics to (41) has been
realized [31] by an eighth-order elliptic filter which we used to
generate the multiplicative Rayleigh distortion. But in the
extended Kalman filter we simplified matters further by
assuming a second-order filter with unknown, time-varying
cutoff frequency w. The performance loss due to this simplifi-
cation was found to be minimal. So, the MD y; is assumed by
the Kalman filter to be generated as

(46)

Sk+1=ar(Di» k) + be(Dies S)Me=A(DPe)sx+Bn,  (47)
Yie=Ce(Pr> $6) = CT(De) sk 48)
with
A o0}l., IB O0). s |lCTO
S kP R P R P
49)

The primed matrices represent a second-order, discrete-time
filter with cutoff frequency w and damping ratio {:

’n__ 0 1 |
4 _[—exP(—Zi'w) 2 exp (— {w) cos (‘*’“‘fz)] ©0
,_ |0
B’ = 1] 51
0
(52)

c'=

1—exp (—2{w)
1+exp (—2¢w)
In our example, we assume the following stochastic model

for the parameter w = 2x7fp which is the normalized cutoff
frequency in radians:

Ske1 =0+ “42)
43)

where {£} and {£¢} are zero mean WGN processes. Relating
this to the notation of Section II we get the random parameter

Di and its dynamics
_|
D= [ wk]

. &
Pes1=du(pi)+Ec=Dpi+ [;*]
k

w1 =wp+ O +EY

(44)

(43)

{1-2 exp (—2{w) cos [2w(1 — {2)?] +exp (—4{w)}

The complex expression in (52) is the result of the requirement
that, with white input, the output average power of the filter
{A’, B’, C’} be independent of the time-varying cutoff
frequency w. This is implied by the assumption that the fading
average power E[|yc||?] is independent of the vehicle speed.
The parameter ¢ takes on a fixed value, for example, 0.2.
Alternatively, it could also have been assumed unknown and
taken into account by the parameter vector py.

Now, with (44)-(52) and (7)-(19) the extended Kalman
filter of Fig. 3 is completely determined. We used the setup in
Fig. 8 to simulate the above ideas. The time-varying cutoff
frequency wy and its estimate are displayed in Fig. 9.

We also ran this example for 4-phase, differentially-
coherent phase-shift-keying (4-DC-PSK) modulation with
decision-aided synchronization. Fig. 10 shows the error-rate
performance of this receiver (using the ‘‘tentative decisions’’
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of Fig. 2) and that of a noncoherent one with differential
detection (4-DPSK) where the superiority of the coherent
detection can be clearly seen. The theoretical result for
coherent 4-PSK with perfect synchronization [17] is also
plotted in that figure. In the presence of diversity (or coding,
in general,) similar ordering of performances are observed.

The MD estimation scheme outlined above has several more
interesting properties. It is free of hangup, as the phase
variable 6 is not approached directly. Also, the magnitude
|7l can be used as the channel quality information in
diversity reception for maximal ratio combining or in a soft-
decision decoder when coded transmission is present.

Before leaving this example, we point out that (in opposed
to Fig. 4) the model of Fig. 6 has no explicit nonlinearity and
if it were not for the sake of random parameters in the LPF’s,
we would have a purely linear model. Such a linear model for
the MD is assumed in [32] and used to discuss optimal
detection and synchronization.

C. Adaptive MD Estimation with Frequency Offset

A problem faced in receivers is a frequency offset after the
received signal is mixed down to baseband. Depending on the
modulation scheme in use, a reasonable amount of left over
frequency  offset can be handled by our baseband synchro-
nizer.

In example A this corresponds to the term h_4/w* in (35)
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which can represent a random frequency walk along with
frequency offset. The latter is taken care of by merely using a
larger value for the first element of P, in (25) which
corresponds to the frequency variable in this example. Such an
easy modification for frequency offset is always possible when
one of the system states is actually the frequency variable.

In general, the matter can be solved by assuming a
frequency offset u(?) in Hz, resulting in a phase change ¢ =
27 (4T u(7)d7. Then the signal U, y, must make a phase rotation
of ¢, by premultiplying it with the time-varying matrix

&, = cos ¢ —sin ¢
k sin ¢ =~ COS ¢ :

So, for Section IV-B, the third part of (49) takes the form

c’rT 0
CT=d>k[ 0 C’T] .

Note that C7 in the presence of frequency offset is no longer
block diagonal and hence a cross-coupling between the two
components of y, exists which was not otherwise present in
Fig. 6.

It remains now to extend the random parameter p; and the
equation describing its dynamics. We can, for example,
assume that {¢;} is the result of random phase and frequency
walk processes

(53)

(59

Pes1= pc+ £
G =i+t Ef (55)

where all inputs are zero mean WGN, as usual. Actually, in
addition to frequency offset this model takes care of instability
of the mixer oscillators. Now, (44)-(46) have the form

DPe=[8x we pe 07 (56)

Die1=di(Di) +Ex=Dpe+ [£§ £¢ £ EQ1T 7
1 0 00
1100

D= 0010 G8)
0 011

Taking all the above system and parameter changes into
account Section IV-B can now be tried again, resulting in an
extended Kalman Filter which adaptively estimates an MD
with randomly varying bandwidth and in the presence of
frequency offset and oscillator instability, the estimates of
which are also delivered. :

We modified Fig. 8 by applying a frequency offset to z;. A
safe upper limit of the normalized frequency offset with CW
transmission is about #/2 rad and with 4-PSK modulation /8
rad, which for symbol rate of 1/7T = 20 kHz corresponds to
(w/8)/(27«T) = 1.25 kHz. Fig. 11 shows the estimation of the
frequency offset by the extended Kalman filter explained
above. The simulated bit error rate showed negligible per-
formance loss compared to Fig. 10, as tracking a frequency
offset using the above method is very satisfactory. However,
the initial acquisition behavior requires a closer look (cf. end
of Section IV-A) which is out of the scope of this paper.

D. Adaptive MD and Received Signal Power Estimation

The received signal power (RSP) is a parameter which may
be needed in many receiver configurations. If the assumption
holds that the PSD of the AWGN is fixed and approximately
known, the estimations of the RSP and the signal-to-noise ratio
(SNR) are equivalent. We define RSP as an average power,
where time-averaging is performed only long enough to leave
out the ‘‘short-term’’ effects but to include the ‘‘long-term’’
ones. For a standard AWGN channel, there are no long-term
effects and the RSP might be an unknown, constant parameter.
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Fig. 11.

On the other hand, the RSP is a slow, randomly varying
parameter in mobile communications with Rayleigh fading
(short-term) and log-normal shadowing (long-term) [30].

Here, we only outline the simple procedure when adaptive
RSP estimation is necessary in the receiver. The schemes in
the examples 4, B, and C can be extended by appending the
additional parameter 7, to (37), (44), and (56) and multiplying
the right-hand sides of (33) and (52) by »,. The square of Fj—;
is a measure for RSP. Therefore, we have adaptive MD
‘estimation schemes which provide estimates of the RSP in
addition to other time-varying parameters of interest. The
estimate 7|, can be used for AGC amplifier setting in analog
and/or digital parts of the receiver.

V. CONCLUSIONS AND FURTHER REMARKS

Near-optimal MD estimation for digital communications
involves, in general, nonlinear models with additional un-
known or randomly varying parameters. The systematic
approach offered in this paper can be regarded as a new tool
for ‘‘carrier synchronization’> where an extended Kalman
filter is applied for estimating a noisy signal with randomly
varying parameters governed by nonlinear dynamical equa-
tions. Under simplifying conditions on AWGN channels, the
solutions found here reconcile with the classical PLL, showing
the ‘‘asymptotic optimality’’ of the PLL in the sense of
MMSE. Novel algorithms with significant advantages have
been derived here for other channels with more involved
models containing fading, shadowing, and frequency offset.

In general, the extended Kalman filter should be tried out
for specific cases, resulting in possible refinements. For
example, in the event of nonsatisfactory performance the same
filter structure with modified algorithms [6], [24] or more
sophisticated filters [6], [14], [25] can be used. If too
complicated to be practical, the extended Kalman filter could
be taken as a starting point with desirable properties. It could
then be watered down to suit the practical limitations.
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