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On Training Fractionally Spaced Equalizers Using
Intersymbol Interpolation

FUYUN LING

Abstract—The use of an intersymbol interpolation method in training
fractionally spaced equalizers (FSE) is investigated. It is shown that the
optimal interpolation filter depends on the amplitude frequency response
of the transmitter filter and the channel. Using a nonoptimal interpola-
tion filter will increase the steady-state mean-squared error (MSE) of the
FSE. An interpolated complex FSE (CFSE) employing a stochastic
gradient, or LMS, adaptive algorithm has very little advantage over an
LMS CFSE with symbol-rate updating. However, an interpolated LMS
phase-splitting FSE (PS-FSE) has a convergence speed that is twice as fast
as a conventional PS-FSE. Special precauti for evaluating the
performance of interpolated FSE’s are discussed and a novel evaluation
scheme is proposed.

I. INTRODUCTION

The advantages of the fractionally spaced equalizer (FSE)
over the symbol rate equalizer have been well recognized [1]-
[3]. The main advantage of the FSE is its insensitivity to
receiver sampling phase. The FSE can be implemented as a
passband or baseband equalizer. In both cases, it follows a
Hilbert transformer, or phase splitter, which converts the real
received signal sequence into a complex sequence which is
used as the input to the FSE. We call this type of FSE a
complex FSE (CFSE). A variation of the CFSE, which
combines the functions of both a phase splitter and an FSE into
one structure, is described in [4]. We call it a phase-splitting
FSE or PS-FSE.

It was proposed in [3] that it might be possible to use
intersymbol interpolation to reduce the training time of an
FSE. In [5], this technique was further developed for the PS—
FSE by using a fast recursive least squares (FRLS) algorithm.
In [6], the interpolation technique is applied to a decision-
feedback equalizer for a special kind of partial-response
signaling. However, the results given in [5] and [6] are only
based a few computer simulations and no systematic investiga-
tion of the interpolation method has been performed.
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In this correspondence, we investigate the interpolation
method for training FSE’s employing the LMS algorithm,
which shall be called interpolated FSE’s. We first derive
the optimal interpolation filter for the interpolated training.
The convergence characteristics of the interpolated CFSE and
PS-FSE are discussed. Problems rising from evaluation of the
convergence and steady-state performance of FSE’s using
interpolation are considered, and a new method that correctly
evaluates the performance is described. Simulation results are
given to verify our analysis.

II. INTERSYMBOL INTERPOLATION FOR TRAINING FSE’s

In a baseband data communication system with a 7/2 CFSE
where T is the symbol interval, an estimate, denoted by Z,, is
generated every T seconds. In the training period, the z,’s are
known to the receiver. The difference between z, and Z,,
denoted by e, is used to update the coefficients of CFSE every
T seconds. The input to the CFSE is the received signal
sampled at every 7/2. Thus, the signal in the delay line is
shifted by two samples for each update.

The idea of intersymbol interpolation is that, if we know the
desired output values of the CFSE every T7/2 seconds, we can
update the CFSE every 7/2 seconds instead of every T
seconds. More frequent updating might result in a faster initial
convergence of the CFSE. In order to obtain these desired
values, a noncausal interpolation filter must be used. The input
to the interpolation filter is the symbols Z,.;, I = 0, +1, +2,
-+ -, and its output is the desired value at nT or n7T + T/2,
denoted by z(nT) and z(nT + T/2). It is obvious that the
output of the interpolation filter at nT, z(nT) has to equal z,.
For such a filter, the folded frequency response must be a
constant. Such a filter is called a Nyquist filter. However,
there are an infinite number of Nyquist filters. Since the
ultimate goal of the CFSE is to minimize the mean-squared
error (MSE) between the symbol z, and its estimate Z,, the
adaptation of coefficients at n7 + 7/2 should improve
performance for the next adaption at n7. Using an arbitrarily
chosen Nyquist filter as the interpolation filter may not
provide such an improvement. It may even result in a larger
steady-state MSE after training than a conventional FSE.

To avoid this problem, the optimal interpolation filter must
also satisfy a second condition, namely, that its frequency
response should be equal to the overall unaliased response of
the transmitter filter, the channel, and the FSE. An arbitrary
Nyquist filter may not satisfy the second condition. From [1],
[31, [7], we know that the optimal 7/2 CFSE has a frequency
response that is

C(w)=F*w)/[|F(w—7)|2+|F(w)|*+ |F(o+ )| 2+ 067 (1)

where F(w) is the combined baseband frequency response of
the transmitter filter and the channel, and o7 is the variance of
the noise, assuming F(w) = O for |w| = 2 «/T, and the data
symbols have a unity variance. The overall frequency re-
sponse, including the CFSE, is thus equal to

F(w)C(w)
=|F()|¥[|Flo—m)|*+ | F(w)|2+ |Fl+m)|2+6 ()

which is the desired frequency response of the interpolation
filter.

It can be seen from (2) that the optimal interpolation filter
depends on F(w), assuming that the effect of o? is negligible.
In practice, the statistics of the channel are not known and the
transmitter filter may or may not be known. Hence, some
assumptions have to be made in choosing the interpolation
filter. Degradation in the steady-state performance of the FSE
will occur if the interpolation filter is nonoptimal.

0090-6778/89/1000-1096$01.00 © 1989 IEEE
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The optimal interpolation filter for a passband CFSE can be
obtained by substituting w — w, for w in (2) where w, is the
modulating frequency. A block diagram of a baseband model
of an interpolated CFSE is depicted in Fig. 1.

As we have shown recently in [8], the optimal frequency
response of a T/M PS-FSE is equal to

Clw)=F*w—-w)/
2 iF(w—wc+2k7r/M)|2+crz:| . 03

~-M2<k<s(M+1)/2

Thus, the optimal interpolation filter for a PS-FSE has the
frequency response

C@F(@)=|Fw-w)|¥/
[ 2 |F(w—wc+2k7r/M)|2+02:| . @
—M2sks(M+1)2

II. INITIAL CONVERGENCE OF INTERPOLATED LMS FSE’s

It has been shown [3], [7], with some approximations, that
when an optimal step size is used, the excess MSE of an SRE
converges according to

€xl(n+ 1)T]=(1~1/pN)eex(nT) + (1/pN)eoy.  (5)

where p is the maximum-to-average eigenvalue ratio of the
autocorrelation matrix of SRE, and e, and e,y are the excess
and optimal MSE, respectively. N is the number of symbols
that the SRE spans. Equation (5) also described the initial
convergence characteristics of an LMS CFSE. However, p
should be interpreted as the maximum-to-average eigenvalue
ratio among the N nontrivial eigenvalues. The other half of the
eigenvalues of a 7/2 CFSE are equal to ¢? which is close to
zero [1], [3].

Recently, we have shown that, for a 7/M PS-FSE that
spans N symbols and has MN taps, 2N eigenvalues are not
zero, and the other (M — 2)N eigenvalues are approximately
zero [8]. By using a slightly different method from [1], [3], we
have shown that its initial convergence can be described by

€l + DT]=[1-1/QpN)lee (nT) + €0/ 2uN)  (6)

where p is the rms(root mean-square)-to-average eigenvalue
ratio among the 2V nontrivial eigenvalues. By comparing (5)
and (6) and assuming u2 = p, we note that it would take twice
as much time for a PS-FSE to converge as a CFSE.
Because the input samples to CFSE and PS-FSE are not
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stationary but cyclostationary [1], [3], [8], the autocorrelation
matrices of data vectors at each sampling instant are not the
same. Previous analysis on the initial convergence of the LMS
algorithm cannot be directly applied to the convergence of
interpolated LMS FSE’s. While a rigorous analysis of the
initial convergence of the interpolated FSE’s is very difficult,
we resort to evaluate their convergence performance by using
computer simulation. First, we provide a heuristic discussion
below.

In general, it can be shown that the optimal initial
convergence of the LMS algorithm depends on the number
of nontrivial eigenvalues of the data autocorrelation matrix
[8]. This number is equal to the number of independent
parameters to be optimized. For example, although the 7/2
CFSE has 2N coefficients, its autocorrelation matrix has only
N nontrivial eigenvalues, and thus it has only N independent
parameters to be determined in adaptation. As a result, a 7/2
CFSE has the same convergence speed as an SRE which has
only N coefficients. An interpolated CFSE has to be optimal at
every nT/2. Its 2N coefficients are then uniquely defined.
Thus, there are 2NV parameters to be optimized. On the other
hand, because the autocorrelation matrices of the data vectors
at nT/2 or (nT + 1)/2 each have only N nontrivial
eigenvalues, the interpolated CFSE can only adjust N parame-
ters at each update. Therefore, the interpolated CFSE, which
has to optimize 2N parameters, will take twice as many
updates as the conventional symbol-updated CFSE to reduce
its MSE to the same level as the latter. Since the interpolated
CFSE updates its coefficients twice as often as the conven-
tional CFSE, their optimal convergence rates are approxi-
mately the same.

By the same argument, the optimal convergence of the PS—
FSE, which has MN parameters to be optimized and is
updated every 7/M seconds, will be the same as the CFSE or
twice as fast as the conventional PS-FSE with symbol-rate
update. The convergence of the interpolated FSE’s does not
depend on the sampling rate of the received signal. It is shown
in Section V that the above conclusions agree well with
simulation results.

IV. EVALUATION OF THE CONVERGENCE OF INTERPOLATED FSE’s

The initial convergence of adaptive algorithms is usually
measured by their output MSE. The output MSE is a good
measure of the closeness of the coefficient vector of an
adaptive filter to its statistical optimum only if the signal to be
estimated is independent of the coefficients used to estimate it.
This condition is satisfied for the SRE and the conventional
FSE’s. However, the convergence of the interpolated FSE’s
cannot be evaluated using the same method because the
outputs of the interpolation filter are correlated. When we
compute the estimate %, of z,, some information about z, is
already contained in the previous outputs z(nT — m7/2) at
nT — mT/2, m > 0 of the interpolation filter and has been
used in computing the coefficients of the FSE at n7. Hence,
the coefficients that were used to compute z, fit z, better than
an unknown desired signal with the same statistics. As a result,
the output MSE will not reflect how close the estimated
coefficients are to their optimum. Ignoring this fact may result
in misinterpretation of simulation results.

In order to correctly evaluate the convergence of interpo-
lated FSE’s during computer simulation, we introduce a
duplicated FSE, which has its own input sample sequence
y(nT/2) and desired symbol sequence u,. These sequences
have the same statistics as the training sequences, z, and
x(nT/2), for the adaptive FSE, but are statistically indepen-
dent of the latter. The optimal coefficients for both FSE’s are
the same. The second FSE is not adaptive. Its coefficients are
copied from the first FSE at each time n7 during training. We
shall call the adaptive and the nonadaptive FSE’s the master
FSE and the slave FSE, respectively. Since the desired symbol
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Fig. 3. Initial convergence of CFSE's.

sequence u, of the slave FSE is independent of the training
sequence Z,, the output MSE of the slave FSE is a correct
measure of the convergence of the interpolated FSE coeffi-
cients. A block diagram of the scheme discussed here for a
baseband model of the CFSE is given in Fig. 2. The
significance of the above discussion will become clearer with
the simulation results given below.

V. SIMULATION RESULTS

Computer simulation has been performed to verify the
analysis given above. A 7/2 CFSE and two PS-FSE’s that
have sampling intervals of 7/3 and 7/4, respectively, were
simulated. All of them span 20 symbol intervals. The overall
frequency response F{(w) is chosen to be square-root raised
cosine with 50 percent excess bandwidth. The optimal
interpolation filter has a raised cosine spectral shape with 5-
percent excess bandwidth as shown above. The signal-to-noise
ratio (SNR) is 32 dB.

Fig. 3 plots the output MSE convergence curves of a 7/2
CFSE for both an interpolated master CFSE which uses the
training sequence and its slave CFSE which uses an indepen-
dent testing sequence as described above. As a comparison,
the output MSE of a conventional CFSE with symbol-rate
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update is also given. The rapid decline of the output MSE of
the master CFSE might lead us to a wrong conclusion that the
interpolated CFSE has a faster initial convergence rate and
yields a smaller steady-state MSE than the conventional
CFSE. Actually, this is not true, as can be seen from the
output MSE of the slave CFSE. The latter correctly reflects
the convergence of the interpolated CFSE and shows almost
no improvement over the conventional CFSE.

As has been pointed out in [5], the noncausal interpolation
method is only possible for training. When the FSE enters the
data mode, it has to be switched to either symbol-rate
adaptation or delayed interpolated adaptation. To show the
real performance of the master CFSE in the data mode, in our
simulation, starting from the 500th iteration, we switched the
master CFSE to the symbol-rate update mode; its output MSE
quickly increases to the same level as the slave CFSE and the
conventional CFSE. Thus, the seemingly smaller output MSE
of the interpolated GFSE is not a correct measure of its
performance in a data mode. Interpolation with delayed
adaptation will have a similar effect as symbol-rate updating.
However, the adaptation step size has to be reduced to ensure
stability and to yield an adequate steady-state MSE, as is
discussed in [9].

Fig. 4 plots the output MSE for 7/3 and 7/4 PS-FSE’s. It
can be seen from the figure that the interpolated PS-FSE
converges twice as fast as the conventional PS-FSE. Again,
the convergence of the interpolated PS-FSE should be
measured by the output MSE of a slave PS-FSE. The output
MSE of the adative master PS-FSE cannot be directly used to
measure its performance. The convergence speeds of the 7/3
and 7/4 interpolated PS-FSE are almost the same.

Fig. 5 shows the affects of the optimal and nonoptimal
interpolation filters. The channel frequency response F(w)
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used in this simulation is not square-root raised cosine; its high
and low band edges have 10 and 8 dB attenuation relative to
the middle of the band, respectively. For such a frequency
response, the raised cosine interpolation filter is no longer
optimal. In the simulation, we use the nonoptimal raised
cosine filter and an optimal interpolation filter, computed
according to (4). It is clear from Fig. 5 that using the
nonoptimal interpolation filter yields a larger steady-state
output MSE than is obtained with a conventional CFSE, while
the output MSE of the interpolated CFSE using the optimal
interpolation filter is similar to the latter. The convergence
rates of the interpolated CESE using the optimal and nonopti-
mal interpolation filters are almost the same during the first 60
symbol intervals, and are about 30 percent faster than the
conventional CFSE. However, the CFSE with the nonoptimal
interpolation filter slows down significantly afterwards as it
approaches a higher asymptote. It is interesting to note that the
convergence behavior of the interpolated FSE’s is almost
independent of the channel characteristics.

All the MSE curves are obtained by using average values
over 100 independent runs. The step size used is computed
according to A = 1/NpE[x¥n)] or A = 1/Nu?E[x*(n)]
where E[x%(n)] is the average power of the input samples and
N is the number of total taps of the FSE’s [1]-[3], [8].

VI. CONCLUDING REMARKS

An expression of the optimal interpolation filter that
depends on the frequency response of the transmitter filter and
the channel has been derived. We showed that using a
nonoptimal interpolation filter will increase the steady-state
MSE of the FSE after training, and thus degrade its perform-
ance. Since the channel frequency response is usually not
known, the application of the -interpolation method can be
limited.

It is shown that, compared to a symbol-rate updating CFSE,
an interpolated CFSE has almost no advantage for good
channels and provides a slight improvement for bad channels.
On the other hand, the convergence speed will increase by a
factor of two for a PS-FSE using sample-rate coefficient
updating and intersymbol interpolation over a conventional
PS-FSE using symbol-rate updating to yield a convergence
speed similar to the CFSE. However, a further increase of the
sampling rate to perform more frequent updating will not
accelerate the convergence speed further. The method of
interpolated training would be useful if faster convergence is
desired at the very beginning of training, especially for bad
channels.

We have also shown that the output MSE of an interpolated
FSE cannot be directly used to measure the convergence and
steady-state performance of the FSE. A novel master-slave
FSE’s scheme for correctly evaluating the performance of the
interpolated FSE is proposed.

Although only the interpolation method for FSE’s employ-
ing the LMS adaptive algorithm has been discussed, some of
the conclusions, such as the optimal interpolation filter and the
master-slave FSE scheme, can be extended to FSE’s using LS
algorithms. Other aspects, such as the initial convergence of
LS FSE’s, both conventional and interpolated, may need more
investigation.
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Generalized Multinomial Detectors for Data
Communication Signals

EMAD K. AL-HUSSAINI

Abstract—A detector with multinomial input (MN) previously derived
for on-off communication systems is generalized to include binary
antipodal signals with arbitrary shapes. The proposed detector is
distinguished by its ler impl tation. No multiplications are
needed and it has a relatively good performance. Results of numerical
examples are obtained under Gaussian and non-Gaussian noise environ-
ments for different numbers of quantization levels. Solutions for M-ary
signaling are also discussed.

I. INTRODUCTION

The multiplications required for a digital matched filter
(DMF) [1] create a problem in microprocessor implementa-
tions of medium- and high-speed voiceband modems. A
number of suboptimal systems using digital techniques for
signal detection [2]-[6] have been proposed that have more
modest computational requirements. In [7], for an on-off
radar system with constant signal amplitude, a class of
detectors transforming the input sample space into a multino-
mial vector was considered. In this paper, it is shown how
similar ideas can be applied to data transmission systems.
Section II includes generalized results for antipodal signals
with arbitrary shapes under Gaussian and non-Gaussian noise.
Results are displayed showing comparisons to previously
analyzed systems. Conclusions and suggestions for further
work are discussed in Section III.

II. GMN DETECTOR FOR SIGNALS WITH ARBITRARY SHAPES

Consider the detection of two equally likely antipodal
signals +S8(f) and —S(f) over a noisy channel. The
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