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discovered recently that Netravali and Pirsch [12] have
devised an almost identical solution to this problem. The
images in figure 2 include the effects of flicker suppression.

III. SUMMARY AND CONCLUSIONS

In summary, this paper has discussed the key steps required
to threshold and compress graphics images digitized from
standard video sources. A number of new concepts relating to
shading correction, filtering and compression of the resulting
image data have been discussed. While each processing step is
conceptually independent, all are necessary to achieve the
combination of excellent quality and high compression. With
the techniques described here it is possible to transmit high
quality simple graphics images over 4.8 kbit/s transmission
links in about 10 s.

The concepts involved in the algorithms are not particularly
complex and do not require specialized hardware for a
practical implementation. They have been used in a network of
videoconferencing rooms within the IBM Corporation.
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The Iterated Extended Kalman Phase Detector

SCOTT A. MERRITT

Abstract—Two extended range phase detectors, including the
““tanlock’’ PD, are derived from the iterated extended Kalman filter in
this correspondence. Fast converging recursion and concise initialization
equations are also given. Simulations of a Wiener phase process and a
first-order Markov FM process show slightly reduced mean-square error
near threshold and faster phase acquisition than a sinusoidal PD.
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I. INTRODUCTION

The application of the extended Kalman filter (EKF) to
angle demodulation problems results in time-varying phase-
lock loop structures [1]-[4] with sinusoidal phase detectors.
Alternative, computationally intensive demodulators have
been developed, such as Bucy’s cyclic Bayesean estimator [5],
Willsky’s Fourier coefficient filter [6], Tam and Moore’s
smoothed EKF [7], and their Gaussian sum estimator [8]. Both
[5] and [8] realize improvement relative to the PLL by
propagating an approximate modulo-27 phase probability
density function (pdf), not just the mean and covariance.
These pdf methods calculate the conditional mean state vector
by using the expected value of a nonlinear observation matrix,
rather than by applying the nonlinear operation to the expected
prior state vector, as is done for EKF demodulators.

The iterated extended Kalman filter (IEKF) realizes part of
the improvement obtained with causal pdf methods by using
the current measurement to refine the EKF linearization. The
benefits of the IEKF approach are: 1) much lower computa-
tional burden than pdf methods, 2) slightly reduced mean-
square error compared to a sinusoidal PD, 3) faster phase
acquisition than a sinusoidal PD, 4) the extended range PD of
[9])-[11] and the ‘‘tanlock’’ PD can be derived from the IEKF
PD, 5) it offers an explanation of the improvement in
performance obtained with ‘‘derivative control’’ as requested
in [11], and 6) it can be incorporated into computationally
intensive smoothing estimators.

II. ITERATION EQUATIONS
A. Formulation

Consider a discrete-time system with linear dynamics and a
nonlinear observation matrix given by

cos (6)

hi(x )= ay sin (6,)

1)

where a; and 6; are components of the state vector x and k is
the discrete-time index [1]-[2]. Rather than compute the
expected value of A, to obtain a minimum variance estimate of
X [12], the [EKF algorithm uses the current (kth) measure-
ment to relinearize the observation matrix around X, starting
with x;(—). The IEKF equations [12] simplify considerably if
the signal amplitude is constant or slowly varying since then
only the phase state update is required to relinearize the
observation matrix. All other state variables are computed
from the converged phase update. The iterated state update
equation therefore reduces to the following IEKF PD recur-
sion:

biv1= l sin (Y’ —4;) + Dg;

@

where the dependence on k has been supressed for concise-
ness, i is the iteration index, |y| is the magnitude of the
received noisy sample | y| exp (jy), ¢~ is the phase lead of the
kth sample with respect to the ‘‘L.O.”" phase 8(-),ie ¢y’ =
W — 6(—)) mod 27, g; = (6; — 8(—)) mod 2« is the PD
output, and D is a demodulator gain factor given by D =
atP(—)/(a* P(—-) + r) where P(—) is the prior phase error
covariance and r is the noise covariance.

We shall now examine an approximate solution of (2) in
order to understand the asymptotic behavior of the new PD. If
the PD output is small, then we may approximate cos (5;) by
one and sin (5;) by j;. Taking the Z transform of the
approximated equation and applying the final value theorem,
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we obtain the ‘‘tanlock’’ PD characteristic [11]

L s
20-D) y| sin

bu(l¥], ¥)= 3)

+m |y| cos (¥")

Since the assumption used to obtain (3) is rather restrictive,
let us examine what happens when (2) has nearly converged.
When §;,; = p; we may rearrange terms to obtain the relation
postulated by Acampora and Newton [9]

AUyl ¥ ) =v(yD sin (0" =5(x], ¥') (C))

where v(|y|) = D|y|/a(l — D) is called the iteration gain.
A fast converging form of (4) can be obtained from the
Newton-Raphson method, resulting in the following recur-
sion:

picos (' —p;)+sin (Y’ —p;)
14+ cos (' —5)

where some functional dependencies have been suppressed for
conciseness.

Pir1=7 (&)

B. Initialization and Solution of the IEKF Recursions

A suitable initialization function may be obtained by upper
bounding sin (|’ — 4|) with a parabola, and substituting the
bound into (4). The solution to the resulting quadratic equation

18
\ﬁr‘*—lswz <l¢’l—;—v>—1r2

8y

a , T
o= [ ¥ |_§+

sgn (¥7). (6)

The solution obtained for the fast IEKF recursion (5) has
some very interesting properties (Fig. 1). First, the IEKF PD
approaches an arctangent for large values of the iteration gain,
v, and approaches a sinusoid for small values. Since v is
inversely proportional to the noise covariance, one should
therefore expect similar performance from the IEKF and EKF
at low CNR’s. Similar performance should also be expected at
high CNR’s since the IEKF and EKF phase errors are small
and the sinusoidal and arctangent characteristics may both be
replaced by the small angle approximation. Second, a discon-
tinuity appears at ' = = for ‘‘large’’ values of the received
signal amplitude, i.e., when v > 1. This discontinuity is due
to the multiple-valued nature of the solution to (4) or (5) for
these conditions (Fig. 2).

III. SIMULATION RESULTS
A. Mean-Square Error

The mean-square error performance of the EKF and IEKF
was evaluated by simulation of a Wiener phase process as in
[51-[71, [13], [14] and a first-order Markov frequency
modulated signal as in [1], [2] and [4]. The signal amplitude a;
was fixed in both cases.

The results for the Wiener phase process were obtained by
taking 10 samples per time constant for the corresponding
analog PLL, i.e., a?Q/r = 0.01 where Q is the incremental
phase variance [14] times the sampling period and r is the
noise covariance. Refer to [4], [5], and [13] for further sample
rate considerations. The demodulator performance metric is
the mean-square modulo-27 phase error o2 computed as a
function of the ‘‘noise-to-signal’’ ratio, L = 10*log (Qr/
a?)V? (Fig. 3). The results of Bucy [5], Willsky [6], and Tam
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Fig. 1. Iterated extended Kalman phase detector characteristic.
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Fig. 2. Two solutions of 5 = v sin (5) in the range [0, x) for vy > 1
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Fig. 3. Phase MSE for Wiener phase process (a> Q/r = 0.01) @ IEKF;

V Bucy; O Willsky; [0 Tam and Moore (M = 6).

and Moore [7] are also given for comparison. The improve-
ment of the IEKF PD over the EKF’s sinusoidal PD, 0.15 +
0.06 dB at L = O, represents a fraction of the improvement
obtained by the causal pdf-based estimators (about 0.60 +
0.15 dB) but the IEKF improvement is possible at much lower
computational cost. Additional preliminary results indicate
that the IEKF is more robust with respect to Q than the EKF.

The IEKF and EKF performance in the first-order Markov
problem ([1], [2], and [4]) was determined as a function of
CNR in the message’s equivalent noise bandwidth for modula-
tion indexes of 25 and 100. The performance metric was
inverse mean-square FM message error E{‘ as in [1], [2], and
[4]. (Note that E"! does not increase 1 dB/dB above threshold
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Fig. 4. E;!versus CNR, 8 = 25.
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Fig. 5.

for this message spectrum [15].) Figs. 4 and 5 show that the
EKF and IEKF outperform a discriminator, a DPLL optimized
according to the Jaffe-Rechtin criterion and the recursive
MAP demodulator of [1]. Most of the IEKF PD improvement
occurred near FM threshold, as expected, and resulted in a
threshold extension of approximately 2 dB relative to the
sinusoidal PD when the modulation index was 100. This is an
example of the phase detector linearity required to achieve the
FM improvement factor for large modulation indexes.

An EKF fixed-lag smoother was also implemented to verify
it’s performance in our FM demodulation problem. As in [7],
the fixed-lag smoother exhibited substantial improvement in
mean-square FM message error for adequate lag values but the
improvement was mainly restricted to suprathreshold CNR’s.
Smoothing also incurred a substantial computational cost.
However, if a smoother is desired, additional improvement
should be possible by using the IEKF PD instead of the EKF’s
sinusoidal PD to extend the threshold of the zero-lag (causal)
estimator incorporated in the smoother.

B. Acgquisition

The phase acquisition behavior of the IEKF and EKF was
studied for the case of a Wiener phase process using an initial
phase estimate uniformly distributed over [—=, m). Fig. 6
shows the rms phase error trajectory which was obtained by

20 25 30 35 40
CNR (dB)

E ! versus CNR, 8 = 100.

averaging 300 acquisition sequences at L = —12 dB. The
IEKF PD exhibited improved acquisition time with no loss in
steady-state mean-square error performance. The difference in
these curves is not large because the two PD characteristics are
distinct for only a portion of the acquisition sequence. In other
words, the IEKF PD initially had an arctangent characteristic
(i.e., the average iteration gain was larger than one) then the
PD reverted to a sinusoidal characteristic as the demodulator
gain converged to it’s steady-state value.

C. Convergence Results

Using (6) for the initialization function, the fast IEKF
recursion (5) converged to within 10~5 radians in only two or
three iterations (Fig. 7). Recursion (4) requires more iterations
than (5) and is more dependent on L.

IV. CoNcLusiONs

A new phase detector characteristic (2) results when the
iterated extended Kalman filter algorithm is used to design
coherent demodulators. The extended range phase detector of
Acampora and Newton and the “‘tanlock’’ phase detector can
be derived from the iterated phase detector. The improvement
in acquisition and steady-state mean-square error performance
is modest but this technique incurs much less computational
cost than pdf or smoothing methods.
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A Limited Sensing Random-Access Algorithm with
Binary Success-Failure Feedback

MICHAEL PATERAKIS AND P. PAPANTONI-KAZAKOS

i 4

Abstract—We consider the pr of r access communication
over a time slotted channel, with binary success/failure feedback. The
feedback informs the users only whether or not there was a success (single
transmission) in the previous slot.

For the above problem we propose and analyze a limited feedback
sensing algorithm (each user is required to observe the channel feedback,
from the time he generates a packet to the time that this packet is
successfully transmitted). The algorithm requires central control imple-
mented by a central receiver.

The limit Poisson user model is adopted. The algorithm achieves a
throughput of 0.322 and induces low delays for relatively low input rates.

I. INTRODUCTION

We consider the case where a large number of bursty,
independent, possibly mobile, packet transmitting users wish
to communicate with each other or with a central receiver, by
transmitting messages over a common channel (e.g., a satellite
or packet radio link, a coaxial cable, etc.). We assume that the
channel is slotted, and that the users are synchronized so that
transmissions can start only at the beginning of a slot.

By the end of each slot, a binary feedback informs all the
active users (users with a packet for transmission) whether or
not that slot contained a single packet transmission. This is
known as success/failure (SF) feedback. This type of feedback
arises when the users attempt to disguise the fact that they are
transmitting by keeping the transmitted power very low. In
this case, a collision of two or more transmitted signals results
in a noise-like waveform that is difficult to distinguish reliably
from pure channel noise. (See [5], [6].)

The solution to the above problem must incorporate a
distributed scheme, termed random-access algorithm, (RAA),
for allocating the channel bandwidth among the users. The key
performance measures of a RAA are its throughput and delay
characteristics.

The SF binary feedback is the poorest kind of binary
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feedback, as compared to the collision/noncollision (informs
the users whether or not there was a collision in the previous
slot) and the something/nothing (informs the users whether or
not the previous slot was empty) feedbacks. The main problem
with SF feedback is asynchronicity in channel history informa-
tion among the active users. When a failure feedback is
received, the users who transmitted (if any) in the correspond-
ing slot recognize it as a collision, while those who did not
transmit cannot discriminate between collision and emptiness.
This fact has been early recognized by the researchers in the
field. In [5], it is claimed that it is not possible to design a
stable RAA for a system with SF feedback, unless some
external control mechanism is deployed. In [6], a finite
number of users is considered, and an algorithm based on
generalized group testing methodologies is proposed. The
algorithm operates cyclically and the collisions (if any)
between packets that arrive during one cycle are resolved
during the next cycle. At the beginning of a cycle, each user
may have a packet for transmission with some fixed probabil-
ity p, which is independent of the length of the previous cycle.
Furthermore, an ‘‘auxiliary’’ user is used in the operation of
the algorithm. The auxiliary user transmits a fictitious packet
in the first slot of every cycle.

To the authors’ knowledge, none of the existing dynamic
control policies used to stabilize the slotted ALOHA protocol
[1], apply for S/F feedback. (See [4, Sect. B.2].) Furthermore,
polynomial and exponential backoff schemes for the slotted
ALOHA protocol have been proven unstable for the limit
Poisson user model ([14], [15]). Of course one can consider
the finite population user model. In [2], it was proven that the
ALOHA system with M identical and independent Poisson
users is stable if the retransmission probability is 1/M. The
algorithm then attains throughput equal to (1 —1/M)¥-!. To
achieve stable operation, each user must know the total
number of users in the system. Furthermore, the delays of this
scheme increase monotonically with M, even if the total input
rate is very small, [3]. Finally, in [16] it is shown that any
superlinear polynomial backoff protocol (e.g., quadratic
backoff), is stable as long as the cumulative arrival rate is less
than one and the number of stations is finite. The delays,
however, increase superlinearly with the number of users in
the system. In contrast, the performance of RAA’s designed
under the limit Poisson user model is independent of the
number of users, and it is not required that each user know the
user population. This is especially important in a system where
the users are mobile, and can thus enter and leave the system
freely. In addition, the infinite user population assumption
provides us with an upper bound to the delay that can be
achieved with a finite number of users, [17]. Furthermore, in
[9] it was shown that, for a large class of RAA’s as the
population size increases, the stability of an algorithm in the
class is determined by the throughput of the algorithm under
the limit Poisson user model.

In this paper, a stable limited sensing RAA for the limit
Poisson user model is proposed and analyzed. The algorithm
works with binary SF feedback. The algorithm requires
central control implemented by a central receiver, which
transmits a fictitious packet after each F feedback slot. This
converts SF feedback to E-S-C (empty versus success versus
collision) feedback. The organization of the paper is as
follows: In Section II, we present the system model. In Section
III, we describe the operation of the algorithm. In Section IV,
the results of the throughput and the mean delay analyses are
presented. Section V contains the conclusions.

II. SYSTEM MODEL

Transmissions by the users are assumed synchronous; that
is, they can only start at the beginning of a slot. When a single
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