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Abstract

This paper describes novel feedforward data-aided
digital estimation algorithms for determining carrier
phase and frequency offsets independently in a burst-
mode linear channel environment corrupted by additive
white Gaussian noise. The techniques are applicable to
linear modulation schemes (M-PSK, M-QAM) and based
on oversampling of a known preamble. The estimators’
performance is analyzed, simulated and verified
experimentally for QPSK/OQPSK systems. Experimental
results demonstrate that the techniques provide a fast
synchronization using a short preamble and low
complexity. oo

1 Introduction

Carrier recovery (CR) algorithms based on feedback
and feedforward structures operating on a single sample
per symbol have been widely used: . Feedback schemes
usually perform well in tracking environments, but may
suffer from hangup problems during acquisition [1]. On
the other hand, feedforward schemes avoid some of the
problems usually associated with feedback loops and are
very well suited for burst-mode systems due to their short
acquisition time.  However, digital implementation
complexity associated with maximum-likelihood (ML) or
approximations to ML estimators for carrier phase and
frequency offsets can be quite costly if high performance
is required [2-3].

This paper describes novel feedforward data-aided
(DA) digital estimation algorithms for determining carrier
phase and frequency offsets independently in a burst-
mode linear channel environment corrupted by additive
white Gaussian noise (AWGN). The proposed sub-
optimum techniques attempt to balance hardware
complexity and performance by oversampling and
processing the received data sequence at a rate higher
than the symbol rate, which is the main difference from
previous techniques. Although the algorithms are applied
to linear modulation formats such as M-ary phase shift
keying (M-PSK) and M-ary quadrature amplitude
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-the  sampling rate,

modulation (M-QAM), only the analysis pertaining to M-
PSK is presented with QPSK and Offset-QPSK (OQPSK)
serving as illustrative examples. After a brief description
of the system model and the Cramer-Rao lower bounds,
the algorithms are described and their performance is
evaluated. Implementation issues are briefly discussed.

2 Background.

2.1 Signal Model

The baseband samples of an M-PSK signal can be
represented as
=0,1,...,

z, =a, expljaf 4Ty, N-1(1)

n+8)+v,, n
where f,y is the carrier frequency offset we wish to
estimate in Hertz, 1/T,, is the sampling frequency equal to
an integer multiple K of the symbol rate 1/T,,, n is the
sample index, N is the number of samples in the
observation window, a, are the symbols of energy E;
taken from the M-PSK alphabet {exp[j((2i+1)z/M],

i=0L..M
distributed in [-7,7], and v, is an additive white Gaussian
noise with independent in-phase (v!) and quadrature

—1}, Ois an unknown phase error uniformly

(v?) components, each of zero mean and double-sided

spectral density > =N,/2. The pulse shaping filters,

equally partitioned between transmitter and receiver,
satisfy the Nyquist criterion for zero inter-symbol
interference over a band-limited channel (root-raised
cosine (RRC) filters are assumed with a 50% rolloff).

The frequency offset f,; may be rewritten more
conveniently as an incremental phase error normalized to
- Q=2nf,T,. The phase and

frequency offsets are assumed unknown but non-random
parameters, and constant for the duration of the burst.
The symbol timing is assumed perfectly known at the
receiver [4].



2.2 Cramer-Rao Lower Bound

Before presenting the algorithms, this section
determines the Cramer-Rao lower bound (CRLB) - a
lower limit on the estimators’ variance that cannot be
beaten by any unbiased estimator. The CRLB for the

estimate 0 is easily determined as [5]

. 1
f)>— L 2

var®) 2 S E TN @

while that for the estimate Q is

var(Q) 2 6 3)

N(N?—1)E I Ny)

where the symbol-energy-to-noise ratio is E /N, =
E, /(26}) = (E,/N,)log, M and E, is the bit energy.

3 Phase Offset Estimation

3.1 Description of Phase Estimator

The phase estimator proposed in this paper is derived
from the first order statistic of the samples:

Elz, 1= E{,/Ex exp(jQn +0) + vl + jv,?} »

C))

= ‘/Eexp(jﬂn +0)
where the noise terms are zero-mean by definition. If a
large number of samples is used, then the random process
may be considered ergodic and the expectation in (4) can
be approximated by its time average. The phase error
estimator is now derived from the time-average equation
given by '

AI_—LHNZ—I _llfl{ﬁ— (Q +0 1+Q}_
=N Hz,,—ﬁm L exp(jQn+6)+v, +v;
1+N-1 o
=" JE, exp(jn+6) )
n=l

The phase argument 0 of A in (5) is easily found to be
the total phase error estimate at the middle of the
observation window of N samples, where N is odd-
valued. Clearly from (6), if the frequency error is zero,

then the estimated phase error 6 corresponds to the fixed
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phase error 8. The estimation range in this case is
bounded by |6 k 7 .

n={+N-1
Im{— 2,
5 y {N Z’ } (N-1
6 — = mt Jb_giQli+r| (6)
1 n={+N-~1
Req—

v S}

Equation (6) is a result of ML estimation theory and is
very similar to the Viterbi and Viterbi (V&V) algorithm
except that M = 1 here for DA operation and that the non-
linearity used in V&V can be set to unity [6]. In addition,
the sampling rate is higher here than in the V&V

technique. Since (6) results from ML estimation theory,
its variance is expected to approach the CRLB [7].

3.2 Performance of Phase Estimator

The performance of 6 was evaluated by simulation in
burst mode QPSK and OQPSK using the signal model

developed in section 2. Fig. 1 graphs the mean of 6
versus the true phase offset for the case of zero frequency
error, N = 64, L = K = 16, and E,/N, = 5dB. From the
figure, the estimator assesses on the average the true
phase error for virtually the entire range [-7,7] except
where the phase folds over owing to the modulus 27

property of 6. Since the mean of 8 equals the
parameter to be estimated, 6 is unbiased in the range
[-m,7m). The chosen window size is even. The reason for

this is explained in the following paragraph.
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Fig. 1. Mean of 6 versus True Phase Error.



" The variance of 6 is plotted in Fig. 2 for even
observation windows, zero frequency ‘error, and QPSK
modulation (OQPSK yielded a similar performance since
the $a1n6 linear channel was used). Although (6) was
originally designed for odd window sizes, its performance
was evaluated for odd and even N. The results for even
window sizes followed the natural interpolation between
the performance points for odd windows, rendering this
estimator very attractive for digital implementation. -
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Fig. 2. Variance of 6 versus Ey/N,.

For the DA case, the variance of 6 is very close to
the CRLB, especially for moderate to high Ey/N,,

indicating that 6 can achieve the lower performance
bound of an efficient estimator, which is very desirable.
This is a direct result of ML estimation principles.

The probability density function of the random noise’s
phase is the only parameter affecting the variance of the
phase estimate and follows a similar distribution as the
one derived in [8-9] for the non-data-aided case operating

at the symbol .rate. Therefore, the variance of 6 can be
easily obtained by numerical integration for the DA mode
using the sampling rate instead of the symbol rate. The
interested reader is referred to [8-9] for the details.

The proposed phase offset estimator is
computationally very efficient since it requires little
hardware for its implementation. The algorithm uses 2N-2
real additions, one scaling function easily reduced to a
shift operation if N is an integer power of 2, and a read-
only memory (ROM) for storing the arctangent values.

In order to verify the concepts put forth in the
previous - section, the .phase estimator was tested
experimentally with OQPSK. The bit-error-rate (BER)
curve is shown in Fig. 3 for coherent OQPSK using the
phase estimator and compared against the ideal case.
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Fig. 3. Bit-Error Rate for OQPSK Modem.

The phase recovery system using 6 and four
preamble symbols is about. 0.4dB worse than the
theoretical BER, indicating that the carrier phase error is
quickly and accurately identified. '

4 Frequency Offset Estimation

4.1 Description of Frequency Estimator

Based on the ergodic principle, Q is found by first
calculating the time average of samples separated by a
fixed correlation distance L over a window of N samples:

+N+L-1

M =Elzz )= Dt

n=l+L

)

where the asterisk denotes complex conjugate. Note that
estimation cannot begin until L samples have been stored
in memory, therefore requiring a total of N+L samples.

Fortunately, this technique operates independently of )
so that the same first N observations are used for both
algorithms, with only L additional samples for the
estimation of Q. '

Substituting z, of (1) into 1(L) of (7) yields

I+N+L-1 - .
Y {E, exp(GQL)}+ 1/ (L) + r2 (L)

n=l+L .

nL)=— ®)

where r/(L) and r2(L) are the autocorrelation functions

of the in-phase and quadrature noise’ components,
respectively. After some straightforward manipulations,
(8) leads to '



Q= arglr ()]

= -arctan{ - E, sin(,QL ) 2 } %)
L |E;cos(QL)+r, (L)+r1°(L)

The effect of r'(L) and r2(L) on Q is easily
removed by selecting L as an integer multiple of K, since
the noise samples at the output of the matched filter are
Gaussian random variables with autocorrelation given by

R = 12(L) = ;v—lo(sinc(%]

_ {0, L=pK,p=012,..

= i (10).
# 0, otherwise

Observe that noise samples are highly cbrrclated for L<K
while L = 0 is of trivial interest. Choosing L = pK, where
p is a positive integer, simplifies the expression in (9) to

11+N+L—l .
Im ﬁ zznzn—pK
Q =—arctan nelil

pK 11+N+L-l .
Re{~— Zz,,z,,_pK

n=l+L

= Larctan{——sm(gp K) }: Q

1.
pK cos(2pK)

The estimation range of Q is restricted to |ﬁ| <rml/L.

4.2  Performance of Frequency Estimator

This section presents simulation results for the mean
and variance of Q. Fig. 4 plots the mean of Q for N =
64, K = L = 16, and E;/N, = 5dB for OQPSK. Setting L
equal to K maximizes the estimation range of Q over
[-m,7). Indeed, the mean of & is unbiased for about 90%
of [-m,7], outside which it suffers from modulo 27 fold-
over. .

The variance of Q (Fig. 5) does not attain the CRLB
even at high E,/N,. However, the degradation is reduced
if the estimation window N is increased, but more
importantly if the correlation distance L is increased. For
better performance, increasing L rather than N is
preferable since L only requires additional memory,
whereas N increases computational complexity. For
example, when N = 64 and L = K = 16 (§ symbols), the
variance of Q is 7dB worsé than the CRLB, but choosing
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L = 5K (9 symbols) reduces this degradation to only 1dB.
Selecting N = 64 and L = K = 16 needs 5 preamble
symbols, 4 of which can be simultaneously processed by
the phase estimator. ,
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Fig. 4. Mean of Q versus True Frequency Offset.
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Fig. 5. Variance of Q versus Ey/N,.

4.3 Implementation of Frequency Estimator

The frequency offset estimator requires 4N real
products and 4N-2 real additions. Scaling by 1/N follows.
The argument of the accumulator averages is obtained via
an arctangent ROM, a CORDIC algorithm [10], or, if Q is
known to be small, the approximation arctan(y/x) = y/x.
Final scaling by 1/L generates the required estimate
normalized to the sampling interval. The correlation
section of the circuit necessitates L unit delays. Choosing
N, L and K as powers of 2 reduces the scaling operations
to simple shift operations so the algorithm can be nicely
implemented in hardware with low complexity.



5 Conclusions

This paper presented DA techniques for carrier phase :

and frequency offset estimation suitable for burst-mode
communication systems. The algorithms were based on
oversampling of the received data sequence. The phase
" estimator proved to be unbiased for almost the entire

range [-m,7] and approached the CRLB for moderate to - .

high signal-to-noise ratios. The frequency estimator was
unbiased for 90% of the expected estimation range but it
did not achieve the CRLB. Increasing the correlation
distance L by a factor of 5 for a fixed window improved
its variance by 6dB and should therefore be considered in
the design of a practical system. Overall, less than 10
symbols were sufficient for acceptable phase and
frequency offset recovery. The feasibility of the
estimators in digital hardware for OQPSK was also
studied in order to demonstrate- the concepts presented
herein. The-algorithms are equally appropriate for burst-
mode M-QAM. :
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