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Abstract— In burst-mode communication systems rapid car-
rier and clock synchronization is essential. In many practical
applications an accurate phase reference can rapidly be obtained
resulting in up to a 2-3 dB performance improvement over
differentially coherent detection. This paper presents a decision-
directed, digitally implemented carrier synchronizer for channels
with both frequency and phase uncertainty. This combined al-
gorithm and its derivatives are analyzed with respect to the
achievable carrier acquisition time and the resulting bit error
probability. For certain data rates (approximately 50 MSps or
less) this algorithm can be implemented using CMOS gate array
technology. As examples BPSK and QPSK modulation formats
are studied herein and compared to their differentially coherent
counterparts of DPSK and DQPSK.

I. INTRODUCTION

ODEMS for burst-mode communications such as time-

division multiple-access (TDMA) or slow frequency
hopping (FH) are used for many applications. The best per-
formance is realized with phase-coherent demodulation [1];
however, the traditional methods of carrier and clock syn-
chronization using phase-locked loops cannot provide rapid
acquisition with high probability when operating in the burst
mode. The phase-locked loop (PLL) exhibits the hang-up
phenomena [4], [S5]. Hang-up is the prolonged dwell at large
phase errors by the PLL. To avoid this phenomenon most
burst-mode modem designs have not incorporated PLL’s for
carrier synchronization.

Certain techniques have been investigated to circumvent
the problems caused by this hang-up phenomena. The initial
research in this area focused on quantifying the hang-up
phenomena [5] and deriving ad hoc structures which miti-
gated the effects of hang-up. Unaided acquisition requires
the transmission of a long preamble if a high probability
of attaining phase lock is required. This characteristic either
reduces the throughput data rate or increases the burst length.
Depending on the application, cither one or both of these
alternatives reduces the attractiveness of using a PLL for
carrier synchronization in burst-mode communications. The ad
hoc structures provide the desired performance improvement
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but do it with a significant increase in complexity and cost.
Tuned tank circuits which ring at the proper frequency {10]
have also been considered. The tuned tank synchronization
architecture performance and complexity is highly dependent
on the implementation.

A third method utilized in burst-mode modems is dif-
ferentially coherent detection of PSK modulation [1]. This
implementation has several advantages. First, the receiver
is very simple. Second, since the previous symbol phase is
the reference for detection of the current symbol, only one
symbol of preamble is required for carrier synchronization.
This modulation format is frequently used in slow FH modems
where the clock epoch is known a priori. In a slow FH system,
several to hundreds of symbols are transmitted each hop but
the hop rate is fast enough to maintain the desired repeat-
back jamming performance. This hop rate in conjunction with
the hang-up phenomena precludes a PLL based modem. The
performance difference between differential coherent detection
and coherent detection is 2—3 dB in coded (high symbol error
rate) systems. This 2—3 dB performance gain is the motivation
for this work

A current trend in carrier synchronization research is the
investigation of algorithms based on the maximum likelihood
(ML) estimate of the carrier phase [7]-[9], [11], [13]. These
algorithms typically operate on both the amplitude and phase
of the received signal and do not contain feedback in the sense
of the PLL. Actually, the most conspicuous characteristic of
these estimation structures is the absence of a locally generated
sinusoid (no numerically or voltage-controlled oscillator is
required). The nonlinear phase estimator [11] is the large
noise approximation to the ML estimator, while the decision-
directed estimator [9] is the small noise approximation. In
[11], the nonlinear estimator has been thoroughly characterized
but similar work has not been done for the decision-directed
estimator.

The decision-directed phase estimator is of practical interest
due to its applicability to all modulation types and its su-
perior performance at high Ej,/Ny. Decision-directed phase
estimation is a very simple method of carrier synchronization.
It can be applied in modems of all modulation types from
BPSK to combined amplitude and phase modulation. Since the
decision-directed estimator is the small noise approximation
to the ML phase estimator, it has near optimum performance
at high E,/Np. This is particularly true for higher order
(MPSK) and non-phase shift modulations, since the noise
enhancement in nonlinear carrier synchronizers significantly
degrades the performance. Decision-directed phase estimation
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has a limitation of supporting only causal estimation structures
(that is an inherent advantage of [11]). Decision-directed
processing is advantageous in many situations but causal
operation is required.

A desirable feature for modern modems is the extensive
use of digital processing in their implementation. Gate array
technology is mature and the use of these technologies in
modems can reduce the size and weight as well as providing
more reliable operation. The ML-based architectures are ide-
ally suited for digital implementation because of the minimal
signal feedback [13], [6] and the ability of ROM’s to provide
a wide range of transfer functions [11]. Because of this fact
the physical implementation of modems can be significantly
simplified.

The work herein essentially extends the theory of digitally
implemented phase estimators in two ways. The first is the pre-
sentation of a phase and frequency estimation algorithm which
can acquire and track a signal with a frequency offset. The pre-
vious work either assumes that the frequency uncertainty was
small [9], [13], hence neglected, or that the estimator structure
was noncasual [11]. The algorithm presented in this paper is
both causal and has a performance which is independent! of the
frequency offset. The second new result is the derivation of the
acquisition performance of these estimators and the resultant
data-aided? BEP learning curves. The acquisition performance
characterization considerably extends the work in [9], [11],
[12], [17]. The results presented in this paper are for BPSK
and QPSK modulations, although a majority of the results can
be generalized to any linearly modulated signal set [6].

The paper is organized as follows. Section II describes
the signal, channel and receiver models which provide the
basis for the ensuing analysis. Section III presents the new
frequency tracking phase estimator (the combined algorithm)
and reviews a special case of this combined algorithm (the
exponentially weighted algorithm [9]). The resultant RMS
phase error performance of the combined algorithm for an
unmodulated carrier input is also analyzed. Section IV derives
the data-aided BEP learning curves and presents simulation
results for the overall BEP for BPSK and QPSK modulations
when the algorithms in Section III are utilized for phase
synchronization. Section V presents the conclusions of this
work.

II. ANALYSIS MODELS

This paper focuses on digital receiver implementations. For
the wideband AWGN channel this receiver can be modeled by
Fig. 1. The modulation signal z(t) represents the transmitted
BPSK or QPSK waveforms in complex baseband form. In
Fig. 1, the complex exponential multiplying z(¢) models the
unknown phase and frequency induced by the channel. The
noise is modeled as additive white Gaussian (AWG) and
the receiver filter is matched to the modulation pulse shape.
The A/D converter samples the matched filter output and

!'The algorithm is independent of frequency offset if subsymbol processing
is used when large frequency errors are possible. See Section II.

2By data-aided we mean that the modulation preamble is known a priori at
the receiver or perfectly estimated when utilizing decision-directed feedback.
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Fig. 1. Analysis model for an AWGN channel.

this sampled signal is used both to estimate the phase and
demodulate the data sequence.

The major assumption made for the results derived in this
paper is that the symbol timing (clock synchronization) is
known. In general this is not the case; however, in certain
burst-mode communication systems applications it is the case.
TDMA systems typically employ highly stable timing sources
[11] and the timing is derived during the preliminary bursts and
periodically updated. The same is true of a slow FHSS system.
For FH systems employed for antijam (AJ) purposes the timing
estimation must be robust and hence it is not desirable to
estimate the timing each hop. These systems will also estimate
the symbol timing prior to data transmission and periodically
update the estimate. The results of this paper can easily be
generalized to other communication systems if symbol timing
acquisition is accomplished prior to the phase acquisition.
Hence, assuming a known symbol timing does not reduce the
significance of this research. The known timing assumption
implies that one sample per symbol provides sufficient statis-
tics for both symbol and carrier phase estimation. This will
become more evident later on in this section.

If symbol timing is known and the pulse shape satisfies the
Nyquist criterion for zero ISI, then the matched filter output
samples have a succinct form. The general form is

2(n) = (an + jbu)V Evp(w,) explj(won + 8,)] + v(n) (1)

where E, is the bit energy, n is the sample number, a,, and
b, are i.i.d. binary modulation sequences (b,, = 0 for BPSK),
w, = wqT is the phase rotation per symbol, p(w,) is the
mismatch loss of the matched filter due to frequency offset,
and 6 is the carrier phase at n = 0. It is easy to show that
v(n) is a zero mean, delta correlated, discrete time, Gaussian
random process with variance Ny. In the slow FHSS system,
ideal rectangular pulses are a good model. Considering this
example, the matched filter output samples, given in (1), have
the form

z(n) = (an + jbn) - \/—E_b-sinc(%a—)
) eXP{j(“’on + % + 91)} +v(n)
= (an + jbn) - \/—E_b-sinc(%)k" exp{jfo} + v(n)

where k = exp[jw,]. The frequency offset (w,) can be
induced by Doppler shift due to relative motion between
transmitter and receiver or manufacturing tolerance of the
frequency sources. The phase process in this model is a
constant.

Equation (1) demonstrates that the matched filter output
sample has the form of a complex sinusoidal sequence in

neormomwm



1646
Decision Data
[|Processor Out
(n)
*
(n) 25 *
x(n. N) MUX | %(n) Phase
| Estimator
Training Select
Preamble

Fig. 2. The proposed demodulator block diagram.

AWGN with a random modulation symbol on each sample.
If the modulation is known (a training preamble) or if the
modulation can be removed, the resultant signal will be a
complex sinusoid in additive noise. The phase of this signal
can be estimated by the PLL or planar filtering. The two most
prevalent methods of removing the modulation are nonlinear
processing [11] or decision-directed processing [9]. This paper
will concentrate on phase estimation techniques applicable to
a decision-directed architecture. The block diagram of the
demodulator architecture being proposed is seen in Fig. 2.
Ideally, T(n) will be a discrete time complex sinusoid in noise
having the form

Z(n) = \/E.p(wo)k™ exp| j80] + v(n)

where E, is the symbol energy.3 The phase estimator processes
both the I and Q components (a planar filter) so when the
modulation is perfectly removed the smoothed phase reference
will have the form

r(n) = v/ G(n)Eqp(wo)k™ exp[j(fo + be(n))] + vr(n)

where .(n) is the phase estimate bias. For analytic simplicity
r(n) is appropriately scaled so v,(n) has a variance of Np.
Because of this scaling, the function G(n) is the signal-to-
noise ratio (SNR) gain of the phase estimator. G(n) is a
measure of the improvement in the reference SNR compared
to the matched filter output SNR. The analogous quantity to
G(n) in the PLL is the ratio of the symbol rate to the loop
bandwidth. G(n) is used in Section IV to find an approximate
BEP expression.

III. DIGITAL CARRIER SYNCHRONIZATION

A. Phase and Frequency Estimation

The burst synchronization problem addressed in this paper
corresponds to the design of a frequency tracking, rapidly
acquiring, causal (due to the decision-directed processing),
digital carrier synchronizer. The synchronizer is analogous
to a Type II PLL since the estimate remains unbiased in the
presence of a frequency offset. Much of the previous work
is not applicable to this problem. References [7], [9], [12]
considered models with negligible frequency offset and are
not applicable. Reference [11] uses nonlinear processing and
a symmetric smoothing filter to produce an unbiased phase
estimate. But the nonlinear phase estimator [11] has degraded

3E, = E, for BPSK and E, = 2E;, for QPSK.
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performance if the frequency offset is a large portion of the
smoothing filter bandwidth. This degradation is approximately
proportional to

plw,) = sinc2<M)

where M is the alphabet size and N is the number of taps
in the smoothing filter. Hence, accurate phase estimation with
significant frequency offset is not possible using the nonlinear
estimation method suggested in [11]. The research presented
in this paper is motivated by the search (need) for a frequency
tracking phase estimator.

Significant insight into carrier synchronization can be de-
rived from optimal filter theory. When using an error-free,
decision-directed algorithm, carrier synchronization can be
cast as a problem in prediction filtering. This idea is de-
veloped in [13] and a generalized Kalman filter for carrier
synchronization results. Unfortunately the Kalman filter has
two shortcomings for burst mode synchronization: 1) for
estimation with a frequency offset an additional state variable
must be added to the Kalman model to represent k [13] and
2) the Kalman filter is a recursive estimator with acquisition
characteristics highly dependent on the initial estimate. The
sampled signal and noise models presented in Section II
are cyclo-stationary random processes and linearly dependent
on both k and exp[jfy]. These characteristics imply that
minimum mean square error (MMSE) linear prediction [3],
[21] can provide some insight into practical digital phase
estimators.

Examination of the MMSE prediction filter provides sig-
nificant insight into the estimation of k and 6. For the
signal model presented in Section I with the modulation
perfectly known and assuming N symbols have been received,
the corresponding prediction filter normal equations for the
estimator of the N + 1 received symbol are of the form [3]

N-1
> Wigs(m—i)=¢a(m+i) 0<m<N-1
1=0
where ¢z(m) is the discrete time correlation function of Z(n).
Since
bz(m) = Es exp[—jwom] + Nob(m)

the MMSE prediction filter is given by

N-1

=== KVFN-1)
NE, + Ny &~

r(N+1) 2

Two important characteristics of this filter structure are each
tap weight has a constant magnitude and is a function of .
Even though k and E, /Ny are unknown, the characteristics of
this MMSE solution can equivalently be utilized to develop
rapidly acquiring carrier synchronizers.

Equation (2) can be manipulated to get a practical phase
estimation structure. Realizing that carrier synchronization
for PSK modulations is only interested in the argument of
r(N + 1), the constant term in front of the summation is
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Fig. 3. Combined algorithm block diagram.

irrelevant. This implies that (2) can equivalently be rewritten
as
N-1
r(N+1) =k Y KEN -i)

=0

_N)+k{k1§kif(N—l—i)]

= kT(N)+ kr(N).

This equation illustrates an important point that if & is known,
then the linear MMSE estimator is expressed in a simple
recursive form. In practice k is not known, but using a
recursive estimator of k¥ and a fading factor results in a
practical carrier synchronization having the form

b(n) 2 aglr(n)]
r(n) = K()[Fr(n — 1)+ 5(n - 1) ©)

where § is the phase estimate at time 7, k(n) is the estimate
of k at time n, and § is the phase estimate fading factor
(0 £ B8 < 1). Due to the recursive nature of this algorithm,
if k is perfectly estimated the coefficients on each matched
filter output, x(n — 1), will be k¢ as in (2). The fading factor 3
controls the memory length of the filter. The choice of 5 is a
compromise between averaging over many symbols (8 — 1)
and reducing the cumulative effect of the noise associated
with k(n)(8 — 0). The algorithm of (3) will be referred to as
the combined algorithm since it combines the exponentially
weighted (EW) estimator [9] with an estimate of k. Fig. 3
demonstrates the inherent simplicity of this digital carrier
synchronizer.

The remaining portion of this section will discuss the vari-
ous attributes of this estimation scheme. First an estimate of &
will be developed and analyzed. Then the combined algorithm
performance will be assessed and important characteristics
highlighted.

B. Estimation of k

An estimate of k£ must acquire rapidly and be simple to
implement for utility in this application. Again, assuming the
modulation is perfectly known the calculation of k(n) can
be formulated in terms of an adaptive linear prediction prob-
lem, i.e.,

Z(n + 1) = WZ(n).

e ormonE
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This is the form of a one step, one tap prediction filter and the
MMSE solution is easily shown to be (see (2) with N = 1)

Wopt & k = exp[ jwo).

Since rapid acquisition is paramount, the least square (LS)
adaptive filters, which exhibit the most rapid convergence to
the MMSE solution [2], [3], are most applicable. Considering
algorithms which minimize the weighted* sum of the square
error, i.e.,

= Y i) - ()P
=1

k(n) has the form [2], [3]

) _nl ()T (i — 1)
kn) = =
igo iz ()2

Since the denominator is just a term proportional to the power
in the sequence z(n) and only the phase of the reference
effects the BEP performance, an equivalent estimator is of
the form

Y TE(E (- 1)

o8

>
-
1
-

k(n) =

EiE - 1) |

o)

1

-
]

This implies that the normalized frequency estimate has the
form

wo(n) = arg

o) = sy e ] @

This frequency estimation component of the combined algo-
rithm was first presented in [25] and also in [20], but the
relationship to the RLS derivation was not recognized.

A closed-form solution for the probability density function
(pdf) of & for an estimator performance evaluation was not
apparent to the authors. Reference [20] made a Gaussian
approximation and calculated the resulting steady-state pdf.
Typically, adaptive filter performance and its learning curves
are evaluated by Monte Carlo simulation. The estimation error
learning curves for this estimator are seen in Figs. 4-5 for
various SNR’s and w, = 0.5 and w, = 1.0 radians/sample,
respectively. Examination of Figs. 4—5 demonstrates that the
rms error produced by (4) is independent of w,. These figures
demonstrate that this estimator rapidly converges to values
very near the optimum Wiener solution (k = exp[ jw,)).

4The weighting parameter v permits the estimate to track the instability
in the carrier frequency. The parameter v will only have a significant impact
on performance when the burst length is long, or burst to burst tracking is
utilized. For this work v = 1.
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C. Phase and Frequency Estimation

The combined algorithm phase estimator uses the estimate
of k given in (4) in the recursive estimator of (3). The initial-
ization of the combined algorithm and the value of 3 have the
greatest impact on the performance of this algorithm. Since
the combined algorithm is a recursive estimation algorithm,
a poor initial estimate can slow the convergence/acquisition
process. Through Monte Carlo computer experiments [6], the
combined algorithm was shown to acquire more rapidly if
the initial symbols were utilized to produce an estimate of &
alone. This algorithm improves the convergence characteristics
of the combined algorithm by delaying the application of the
exponential weighting until k(n) becomes less noisy. In [6] a
four-symbol frequency estimation preamble demonstrated the
desired performance. The nonlinear nature of this algorithm
precludes a numerical analysis but the phase estimation learn-
ing curves derived from Monte Carlo simulations are presented
in Figs. 6—7. In these figures kk refers to the length of the
frequency acquisition preamble and w, the phase change per
symbol (normalized frequency offset).

The choice of the parameter 3 determines the performance
of the combined phase estimator. At first glance it appears that
B determines the bandwidth of the estimator as in [9], but the
operation is more subtle. In effect 3 determines the memory of
the estimator. Solving the corresponding difference equation,
r(n + 1) can be expressed as

r(n+1)= ,E:‘: g []i[o l}(j)}i(n —i).
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Es/No =10dB, B2 =0.75, kk = 4, 10 000 trials.

In this equation the explicit effect of 3 can be seen. If 3
is near unity many samples in the past will contribute to
r(n + 1) and hence better smoothing of the reference is
obtained. Unfortunately since k(j) is noisy the values of
Z(n — 1) in the past will also be weighted by powers of this
noisy estimate. Because of this weighting, contributions from
far in the past will be very noisy. Conversely if 3 is near
zero the error due to noise in k(j) will be minimized, but
less smoothing of Z(n) occurs. This implies an optimum
exists which minimizes the mean square phase error. Work
presented in [6] determined that this optimum value of § is
approximately 0.75 for E; /Ny = 2 dB.

D. Algorithm Characteristics

If k is accurately estimated prior to a burst (or if k=1),
the algorithm’s performance will be very near that of the EW
phase estimator [9]. This can be useful in a system application
where the frequency sources are stable. Since the expression
for k(n) determined by (4) is recursive, saving the value of

S EHE - )
=1

for each user will produce performance much closer to the
ML-phase estimator given in [8]. In this way the set accuracy
of the frequency sources can be less stringently specified
and the system cost can be reduced while maintaining rapid
acquisition.

Several characteristics of the EW estimator provide insight
into the combined algorithm performance. A quantity of
interest for the EW algorithm is the SNR gain, G(n). For
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the EW estimator, G(n) is given by [6]

_(1-87’(1+8)

1-pmQa-p)
A disadvantage of the EW estimator is its inability to com-
pensate for a frequency offset. So if the estimate of k£ was not
included in the combined algorithm, a phase error bias would
occur. This bias is given by

1- (ﬁk_l)nk—l
1-pk-1
and the corresponding gain is

Gw = L)AL -5

11— BE=12(1 - p%7)
These quantities combined with results in Section IV provide
methods to approximately calculate the BEP during acquisi-
tion.

Finally, the combined algorithm is a nonconstant modulus
algorithm. The only advantage of this algorithm is the absence
of hang-up [4], [5] when utilized with an unmodulated carrier
or a training preamble. Otherwise, BPSK and QPSK demodu-
lators are transparent to the reference signal magnitude.

G(n) )

®)

fe(n) = arg

Q)

IV. BEP PERFORMANCE

A. BPSK and QPSK BEP with Noisy Complex Gaussian
References

Optimum (in MAP sense) receivers of digitally modulated
signals when the phase reference is random are a combination
coherent receiver and square-law (noncoherent) receiver [15].
For BPSK and QPSK, a simplification is possible and the
resulting receiver structures are

1:1 = sgn[Re(z(n)r*(n))]
b= sgn[Im(x(n)r*(n))] (QPSK only)

where 7(n) is the noisy phase reference.

The goal of this section is to quantify the equivalent BEP
obtained during acquisition. Typically, burst-mode communi-
cation systems dedicate a preliminary portion of the burst to
carrier acquisition.” During this preamble, the equivalent BEP
is amenable to analysis. Since the matched filter output z(n)
and the reference signal r(n) are complex Gaussian random
processes (or accurately modeled as complex Gaussian), the
problem can be analyzed with many well-known techniques.

In [17] a method particularly applicable to this problem was
proposed. The BEP for the BPSK demodulator reduces to

Pg(E) = P(Re[z(n)r*(n)] <0).

Assuming both z(n) and r(n) are complex Gaussian signals
and recalling the definition of the reference SNR gain G(n)
the BEP performance of the BPSK receiver with no phase
reference bias can be calculated by [17]

Pa(B) = 5 [1 - QA Vi) + Q(vAVR)] ®

SThe work in [11] is an exception but it has degraded performance with
frequency offset.
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where

Q(a,b) = 7x exp[— ( a? ;’ 2 )] To(az) dz

b

is the Marcum Q-function and®

= %(\/GRS VR
Ty = %(\/GRS +vVR,)?

where Ry = E,/Ny.

Calculation of the BEP of a QPSK receiver with a noisy
Gaussian phase reference can again be accomplished using
Stein’s method [17]. Since the noise is rotationally invariant
and the quadrature modulation symbols are independent, the
BEP can be expressed as

Po(B) = 5 P[Relz(n)r*(n)] < 0
+ %P[Im[m(n)r*(n)] <0].

Using the same procedure as used to derive (8), the QPSK
BEP can be expressed as

Po(B) = 5 [1- @i v73) + (VR V)| ©)
where
rg = %[GRS + R, — Rsm]
re = %[GRS + R, + RS\/%]

R, = E,/Ny = 2E,/No.

The results in (8) and (9) can be studied to determine the
interaction between the reference gain G and the BEP.

B. Acquisition BEP with Prior Frequency Estimation

This section will present the BEP learning curve. The BEP
learning curve is simply a plot of the equivalent BEP as
a function of symbol number after the start of acquisition.
This curve is important in the design of FH or TDMA
communication systems utilizing decision-directed carrier syn-
chronizers. Examination of these curves provides one method
of selecting the carrier acquisition preamble length. The BEP
performance analyzed in this subsection corresponds to either
the performance of the EW phase estimator with negligible
frequency offset or the combined algorithm with an accurate
prior estimate of k. In this case, the BEP learning curves will
be a function of the R, (3, and the symbol number. Since the
reference SNR gain of the EW estimator is given in (5), the use
of this result in (8) and (9) produces the BEP learning curves
for BPSK and QPSK, respectively. These learning curves are
plotted in Figs. 8—9. These figures demonstrate, in agreement
with [19], that only a few symbols are needed to produce near-
ideal BEP performance for BPSK and QPSK modulations with
digital carrier synchronizers.

6When G(n) is not an explicit function of n, we will use G.
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C. Acquisition BEP With No Frequency Estimation

As was shown in Section III-D the EW algorithm develops
a phase bias in the presence of a frequency offset. This section
will analyze the BEP performance of BPSK and QPSK when
utilizing this algorithm. In performing this analysis the first
point to realize is that the phase estimate is still a complex
Gaussian process. To calculate the BEP we again use Stein’s
method [17] to get

1

Py(E) = 5 [1 - Q(vis, /%) + Qv vis) | (10)
where’
rs = 02(2“]0) [G’RB +R, - ZRS\/ECOS(OE)}

2
re = p (;0) [GRS + R, + 2R5\/acos(05)}.

The phase estimation bias #. is given by (6) while the
reference SNR gain G is given by (7). Consequently, the
BEP learning curves of BPSK utilizing the EW estimator
when the input signal has a frequency offset are derived
by substituting these factors into (10). Figs. 10-11 show
these curves for various frequency offsets. As can be seen
from the figure for each value of 3 there are frequency
offsets at which the steady-state BEP performance of the
EW estimator becomes worse than a DPSK demodulator. The
cause of this degradation is the phase estimate bias developed
by the EW algorithm. These frequency offsets at which the
estimator becomes ineffective are lower for higher values of

7 Also, when 6. (n) is not an explicit function of n we will use fe.
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Fig. 11. BEP learning curve of the EW algorithm for QPSK modulation with

frequency offset. 3 = 0.875, Ep/No = 2 dB.

B. In a channel with no frequency uncertainty, increasing
B improves BEP performance by averaging the received
complex sinusoid over more symbols. When a frequency offset
is present, the larger 3 is, the larger the phase estimation
bias. This bias degrades the performance, while the increased
averaging improves that performance. Essentially this implies
that for each frequency offset there should exist an optimum
value for 3 which would minimize the BEP. A very similar
characteristic is exhibited when the correlation time of the
phase noise process is shorter than the effective window length
of the phase estimator. These characteristics are important to
consider during the system design and analysis.

The BEP learning curves for QPSK can be derived in a
similar manner using the methods developed in Section IV-B.
The BEP of QPSK is given by (9) and for a phase error bias
0. the reference signal will have the form

r(n) = v GEsexp[j(8 + 0c)] + vr(n)

while the matched filter output for a, = 1 and b, = 1 has

the form
0)} +u(n).

Using the results in [17] the conditional BEP reduces to

o(n) = VE, exp[j(—} 4

- QW V) + 3. V)
- 3OV V) + Q. V)

119(1?)=:€§
1
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s

T10 =

where
Ty = P> (o) [GRS + R, — 2R€leécos(E + 95)-
2 1 ]
_ Aw) [GRs + R, + 2Rs\/acos(z + ee)-
2 1 ]
"2(2“’0 [GR + R, - 2R, \/acos(g 08)
| )

GR; + R, + 2R, \/Z;'_cos(

Using (6) and (7) in (11) produces the desired BEP learning
curves for QPSK. Fig. 11 shows these curves for various
frequency offsets. As expected the sensitivity of QPSK to
a phase reference bias is greater than BPSK. These results
are important to consider when trying to gain the addi-
tional performance available with near coherent demodula-
tion.

An interesting extension of (11) is the simple calculation
of the BEP of a DQPSK demodulator in the presence of a
frequency offset. This BEP can be determined by substituting

r7 = Rep*(wo)|1 — cos( +w,,)
T8 =

[
(wo)
ror = Rop*(wo)[1 -
[

into (11). This appears to the authors to be an alternate method
to that derived in [20] using results from [18].

D. Combined Algorithm BEP Acquisition Characteristics

The BEP performance evaluated in this section corresponds
to a receiver which uses the combined algorithm presented in
Section III-A to obtain a phase reference. Since the combined
algorithm utilizes nonlinear processing, an analysis is not
tractable. For this reason, Monte Carlo simulation was used to
evaluate the BEP learning curves for the combined algorithm.
Fig. 12 shows the simulated BEP learning curves for BPSK
modulation of this algorithm. Fig. 12 demonstrates that § =
0.75 is near optimum exponential weighting for steady state
BEP performance at R, = 2 dB (R, = Ey/Ny). Fig. 13 are
the identical curves for QPSK modulation. It should be noted
that these curves correspond to the performance during an
unmodulated or training preamble. The effects of decision
errors on the performance will be considered in Section IV-
E.

E. Combined Algorithm with Decision Errors

Decision errors will degrade the performance of a decision-
directed carrier synchronization subsystem. For the EW phase

meormo ok
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Fig. 12. BEP learning curve of the combined algorithm for BPSK modu-
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lation. Ey/No = 2 dB, kk = 4, 10 000 Monte Carlo trials, wo = 1.0
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estimator, a nonlinear statistical analysis is possible and is
given in [22]. The combined algorithm is not amenable to
analysis, hence the effect of decision errors will again be
evaluated by Monte Carlo simulation.

BPSK and QPSK constellations exhibit quadrant symmetry
so multiple stable “lock” points exist. It is possible (at low
SNR likely) to slip from one “lock” point to another. This slip-
ping phenomena is partially compensated for by differential
encoding of the transmitted data. Figs. 14—15 present the BEP
waterfall curves with differential decoding derived from the
Monte Carlo simulation. A simple Monte Carlo trial consisted
of a 60-symbol burst, where four symbols were devoted solely
to frequency estimation (kk = 4) and 5 symbols to phase
estimate smoothing. The remaining 51 symbols were randomly
modulated symbols. The BEP plotted in the figures is the
average over this 51 symbol interval and each Monte Carlo
trial.

Figs. 14—15 demonstrate the combined algorithm produces
the desired results. For BPSK with R, = 2dB, the
performance is within 1 dB of ideal, while at Ry = 6 dB,
the performance is within 0.3 dB of ideal for a frequency
offset of 0.5 radians per symbol. The QPSK performance
is about 1.0 dB degraded over the regions of interest.
Causes of this reduced performance include the increased
sensitivity to noisy phase references and a higher probability
of slipping inherent in QPSK modulation. The combined
algorithm produces a rapidly acquiring (= 9 symbols),
high performance phase estimator analogous to a Type II
PLL.
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Fig. 14. BEP of differentially encoded BPSK modulation with a decision-directed combined algorithm phase
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estimator. Nine symbol training preamble (kk = 4), 3 = 0.75 10 000 Monte Carlo trials, wo = 1.0 radian/sample.

V. CONCLUSION

Two major conclusions can be reached from this work.
First, in channels where the correlation time of the channel
phase process is long relative to the symbol duration, digital
signal processing architectures exist which can rapidly acquire
and track the phase and frequency. If the carrier frequency
is accurately known then the EW algorithm can acquire
a reference in less than 5 symbols. For reasonable E;/Ny
and an unknown frequency, the combined algorithm provides
reliable carrier synchronization in approximately 9 symbols.
Improved performance can be obtained with longer preambles.
Finally, Stein’s method [17] provides a powerful analysis
tool for evaluating the approximate degradation to BEP for
data-aided implementations of these carrier phase estima-
tion structures. This method has recently been generalized
by Lindsey and Biyari [23], [24] and applied to the prob-
lem of diversity reception over nonzero mean, complex non-
Gaussian, noisy channels; the complex Gaussian being a
special case.
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